On the path to an artificial cell

June 20, 2018, Max Planck Society
On the path to an artificial cell
Cells made from water in oil: Using microfluidics technology, a Franco-German research team first generates tiny droplets (top) into which the components of a simple metabolism are then injected (bottom). The bar corresponds to 100 micrometers. Credit: Nature Communications 2018

It is hoped that cells created in a test tube can answer some of the major questions in biology. What is the minimum that a cell needs in order to live? And how did life on Earth begin? Researchers from the Max Planck Institute for Dynamics of Complex Technical Systems in Magdeburg and the Paul Pascal Research Center at the CNRS and University of Bordeaux are now presenting the forerunners of an artificial cell. In an experiment of synthetic Biology they have succeeded in incorporating the simple form of a metabolic function into microscopically small droplets: a chemical reaction, maintained by an integrated energy supply.

"How does a living organism avoid deteriorating?", Erwin Schrödinger asks in his book, "What is Life?", in which he explains the physical aspects of living matter. According to the physicist, the answer is simple: "Through eating, drinking and breathing (...)". The specialist term used for this is "metabolism", better known as "metabolic function". The biochemical processes that occur enable living organisms to gain energy and build up or break down substances. For individual , too—regardless of whether they are single-cell organisms or are organized within a larger organism—metabolic function is essential for the ability to live and survive.

Living cells need a metabolism and a boundary to the environment

Therefore, if researchers in synthetic biology wish to synthesize cells, among other things, they must integrate a metabolism into a space that is separated off from the environment. This is precisely what scientists, led by Jean-Christophe Baret from the Centre de Recherche Paul Pascal (CRPP, in English: the Paul Pascal Research Centre) in Bordeaux and Kai Sundmacher from the Max Planck Institute for Dynamics of Complex Technical Systems in Magdeburg, have now succeeded in doing in a simplified form. Here, their artificial cells consisted of nothing other than microscopically small water droplets, which were formed in oil. They served the researchers as tiny units that were separated from their environment—similar to cells that are separated off from their environment by a membrane.

The researchers added different molecular components into the interior of these droplets, which in turn simulated a metabolic reaction. Admittedly, at first sight, such a simplified synthetic cell looks very different from its natural equivalent. However, one thing is certain: "From a technological perspective, such minimal systems are relevant models from which more complex systems that are closer to nature can be developed", Kai Sundmacher, Director of the Max Planck Institute in Magdeburg explains.

What are the decisive components for a living cell?

According to Ivan Ivanov, engineer and researcher at the Max Planck Institute for Dynamics of Complex Technical Systems, he and his colleagues initially anyway only wanted to design a minimal system that has the basic properties of the cell. This is the only way that makes it possible to find out which components are ultimately of decisive importance for life. Step by step, he and his colleagues therefore built a model metabolic function from molecular components. The jargon used by specialists for this procedure is the bottom-up principle.

For engineers, the bottom-up approach is part of their everyday work, but for synthetic biologists, it is not. Instead, they usually work using the top-down principle. They start with a real organism, which they modify using genetic technology methods, thus equipping it with new functions and properties. "In the genetic material of cells, however, there are many things that are redundant or even unnecessary", Ivanov explains, with reference to the problem of using top. down approaches. After all, in such cases, the scientists do not learn which features really are necessary for the creation of life.

A rudimentary metabolism: In a water drop stabilized by a surfactant in oil, glucose phosphate (G6P 1) is oxidized to a lactone (G6P 2) by means of a dehydrogenase enzyme (G6PDH). The reaction is driven by the conversion of NAD+ to NADH, which is subsequently recycled by inverted membrane vesicles (IMVs). Credit: MPI for Dynamics of Complex Technical Systems
The microfluidic technique produces droplets as required

As well as the metabolic function, separation from the environment is also needed. As Ivanov explains, "Each cell has a wall to a certain extent, which separates it from its environment". Such separate compartments, as the specialists call them, can either be created through membranes or, as in this current work, through droplets.

The researchers are using what is known as "microfluidic technology", which makes it possible to produced microdroplets in large numbers and quickly analyze them. Here, the scientists have been able to finely adjust both the size and the composition as required. Using microfluidic modules, they then filled the compartments with glucose phosphate and the co-factor NAD+. To a certain extent, the former provides nutrients for the artificial cells, which in the presence of the co-factor NAD+ are transformed into a chemical end product while releasing chemical energy.

NAD+ also plays a role in the metabolism of living cells, and absorbs hydrogen during the course of the metabolic reaction, so that it is converted into NADH. In order for the reaction to be maintained in reality, the scientists added a module that regenerates the NAD+ by oxidizing NADH back to NAD+. Thus, the co-factor is always available in its required form.

If the glucose phosphate has been entirely used up, the cells go into a sleep mode to a certain degree, which could be brought to an end through renewed feeding with their nutrients, using – again – a microinjection system.

Real cells must multiply and store their structural design

According to the head of the project, Jean-Christophe Baret, the model metabolism has all the basic features of natural and offers a platform for further studies: "With the microfluidic technology, we can produce controlled quantities of such elementary components and give them even more complex functions. In this way, hypotheses can in turn be tested regarding the creation of life from known and controlled ingredients." In order to really imitate genuine cells in a way that is sufficiently close to reality, such systems also require the ability to reproduce, for example, as well as a mechanism for storing their structural design, a set of features still ahead of us.

However, even without these features, for the lead author of the publication, Thomas Beneyton, it is possible that such artificial systems will behave in a similar way to biological ones. For example, droplets can be produced with "unequal fitness—in other words, with a different appetite or with a variable output quantity of nutrients—and permit the exchange of nutrients among the cells. In this way, a competition situation could be created such as those that are also observed among real cells. Such droplet cells would then behave entirely in accordance.

Explore further: Artificial enzyme can activate a gene switch

More information: Thomas Beneyton et al. Out-of-equilibrium microcompartments for the bottom-up integration of metabolic functions, Nature Communications (2018). DOI: 10.1038/s41467-018-04825-1

Related Stories

Artificial enzyme can activate a gene switch

May 22, 2018

Complex reaction cascades can be triggered in artificial molecular systems: Swiss scientists have constructed an enzyme than can penetrate a mammalian cell and accelerate the release of a hormone. This then activates a gene ...

A photosynthetic engine for artificial cells

May 29, 2018

In the quest to build an artificial cell, there are two approaches: The first, reengineers the genomic software of a living cell. The second, focuses on cellular hardware, building simple, cell-like structures from the ground ...

Nanocapsules enable cell-inspired metabolic reactions

September 19, 2017

Researchers at the University of Basel succeeded in developing capsules capable of producing the bio-molecule glucose-6-phosphate that plays an important role in metabolic processes. The researchers were able to produce the ...

Recommended for you

Can China keep it's climate promises?

March 26, 2019

China can easily meet its Paris climate pledge to peak its greenhouse gas emissions by 2030, but sourcing 20 percent of its energy needs from renewables and nuclear power by that date may be considerably harder, researchers ...

What happened before the Big Bang?

March 26, 2019

A team of scientists has proposed a powerful new test for inflation, the theory that the universe dramatically expanded in size in a fleeting fraction of a second right after the Big Bang. Their goal is to give insight into ...

Cellular microRNA detection with miRacles

March 26, 2019

MicroRNAs (miRNAs) are short noncoding regulatory RNAs that can repress gene expression post-transcriptionally and are therefore increasingly used as biomarkers of disease. Detecting miRNAs can be arduous and expensive as ...

In the Tree of Life, youth has its advantages

March 26, 2019

It's a question that has captivated naturalists for centuries: Why have some groups of organisms enjoyed incredibly diversity—like fish, birds, insects—while others have contained only a few species—like humans.


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jun 20, 2018
GREAT WORK, How Much Primitive it may be right now, eventually leading to Future Eminence !
not rated yet Jun 20, 2018
GREAT WORK, How Much Primitive it may be right now, eventually leading to Future Eminence !

Scott Wolfenden
5 / 5 (1) Jun 21, 2018
Going further with it, will science develop the artificial cell to the point of spontaneous generation of life? What we teach is impossible, Pasteur and company, is what we say actually occurred in the primordial soup. Charles Carter of the University of North Carolina, in his research refers to the emergence of life: "I believe that life as we know it involves so many enchanting coincidences..." How many steps or "coincidences" would it take to travel from a primordial soup to cellular life?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.