Performing under pressure: Modeling oxidation in high-stress materials

April 17, 2018, American Institute of Physics
Schematic of an oxide film/substrate system and the oxidation process. In the first stage, the flux affects the diffusion and adsorption of oxygen from gas to the gas/oxide interface. Credit: Mengkun Yue

Each year, the effects of corroding materials sap more than $1 trillion from the global economy. As certain alloys are exposed to extreme stress and temperatures, an oxide film begins to form, causing the alloys to break down even more quickly. What precisely makes these high-temperature, high-stress conditions so conducive for corrosion, however, remains poorly understood, especially in microelectromechanical devices. In the Journal of Applied Physics, Chinese researchers have started to chip away at why these materials corrode under mechanical stress.

Xue Feng, a professor at Tsinghua University, and his research team describe how can affect the oxidation process. Their model draws on oxidation kinetics to explain how stress affects the oxidation species that diffuse throughout the oxide layer, and how stress modifies chemical reactions at interfaces and lead to oxidation.

"Our work is in the direction of fundamental research, but it is indeed based on engineering problems," Feng said. "We expect that it provides guidelines for more accurate predictions in engineering applications, including better designs to compensate for material and system failure by taking into account the oxidation process."

For decades, research into the chemomechanical coupling of and oxidation focused on relating stress to one of two different features of alloy corrosion. Specifically, stress tends to accelerate the oxidation occurring on the surface of the material at the interface between the device and oxygen from the surrounding air. Stress also changes the ways oxidative compounds diffuse throughout the nanoscale structure of a material.

This group's work combines stress and the oxidation process into a new model. First, a substrate, typically the corroding alloy, absorbs oxygen and forms a metal oxide layer. More oxygen can diffuse through this layer, which can react with the next layer of alloy behind the oxidation interface.

"Our work here mainly deals with the second and third stages, in which the stress, either externally applied mechanical loading or intrinsically generated stress due to the oxide formation itself, could affect the diffusion and chemical reaction process," said Mengkun Yue, another author of the paper from Tsinghua University.

The team's model predicted that when under heavy loads are compressed, they absorb less oxygen. Correspondingly, stresses that pull the material apart provide more space for oxygen to infiltrate the alloy.

The group tested this framework on samples of SiO2 grown on a Si substrate using multibeam interferometry, a method that other researchers had previously demonstrated, and found that their theoretical predictions matched the data.

Xufei Fang, an author on the paper at Max Planck Institute for Iron Research, said he hopes that verifying a unified model for stress-oxidation coupling can help improve microelectromechanical devices. At high temperatures or under , these devices can experience markedly more because of their large surface area-to-volume ratio.

"We expect a more general application of our model and we will develop our further, in the next steps, to apply them to microscale systems," Fang said.

Explore further: Self-healing metal oxides could protect against corrosion

More information: "Effect of interface reaction and diffusion on stress-oxidation coupling at high temperature," Journal of Applied Physics (2018). DOI: 10.1063/1.5025149

Related Stories

Accelerated analysis of the stability of complex alloys

December 22, 2017

Material scientists at Ruhr-Universität Bochum are able to determine if a new material remains stable under temperature load within the space of a few days. They have developed a novel process for analysing, for example, ...

Helping materials handle extreme stress

October 11, 2011

Important pressurized water nuclear reactor components are being made from a nickel-base alloy that contains twice the amount of chromium as the material previously used. The new alloy, called alloy 690, performs better, ...

Metal oxidation controlled by atomic surface steps

March 19, 2015

Rust never sleeps. Whether a reference to the 1979 Neil Young album or a product designed to protect metal surfaces, the phrase invokes the idea that corrosion from oxidation—the more general chemical name for rust and ...

Recommended for you

Physicists discover new class of pentaquarks

March 26, 2019

Tomasz Skwarnicki, professor of physics in the College of Arts and Sciences at Syracuse University, has uncovered new information about a class of particles called pentaquarks. His findings could lead to a new understanding ...

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.