New catalyst helps turn carbon dioxide into fuel

Imagine grabbing carbon dioxide from car exhaust pipes and other sources and turning this main greenhouse gas into fuels like natural gas or propane: a sustainability dream come true.

Researchers observe metal to metal oxide progression

A catalyst's utility is influenced by its surface charge and how that charge is transferred. Until recently, studying charge transfer has relied on complex imaging techniques that are both expensive and time-consuming. Scientists ...

Six degrees of nuclear separation

Argonne scientists look to 3-D printing to ease separation anxiety, which paves the way to recycle more nuclear material.

To build a better semiconductor, first identify its defects

Gallium oxide is a remarkable wide-bandgap semiconductor material. Put simply, that means it could potentially be used to create electronic devices that can operate under extreme conditions – such as when exposed to high ...

Bacteria bullets target toxic algae

Communities across the United States and around the world, along salty bays to freshwater lakes, increasingly are grappling with the dangerous effects of microscopic algae that suddenly grow out of control in these waters. ...

page 1 from 23

Redox

Redox (shorthand for reduction-oxidation reaction) describes all chemical reactions in which atoms have their oxidation number (oxidation state) changed. This can be either a simple redox process such as the oxidation of carbon to yield carbon dioxide or the reduction of carbon by hydrogen to yield methane (CH4), or it can be a complex process such as the oxidation of sugar in the human body through a series of very complex electron transfer processes.

The term redox comes from the two concepts of reduction and oxidation. It can be explained in simple terms:

Though sufficient for many purposes, these descriptions are not precisely correct. Oxidation and reduction properly refer to a change in oxidation number — the actual transfer of electrons may never occur. Thus, oxidation is better defined as an increase in oxidation number, and reduction as a decrease in oxidation number. In practice, the transfer of electrons will always cause a change in oxidation number, but there are many reactions that are classed as "redox" even though no electron transfer occurs (such as those involving covalent bonds).

Non-redox reactions, which do not involve changes in formal charge, are known as metathesis reactions.

This text uses material from Wikipedia, licensed under CC BY-SA