Unconventional piezoelectricity in ferroelectric hafnia

Hafnium oxide thin films are a fascinating class of materials with robust ferroelectric properties in the nanometer range. While the ferroelectric behavior is extensively studied, results on piezoelectric effects have so ...

A novel catalyst for efficient oxidation of inactive alkanes

A discovery in the field of catalysis has emerged from the laboratories of Professor Jaeheung Cho and his team in the Department of Chemistry at UNIST. Their pioneering work has led to the development of a copper(II)–alkylperoxo ...

page 1 from 40

Redox

Redox (shorthand for reduction-oxidation reaction) describes all chemical reactions in which atoms have their oxidation number (oxidation state) changed. This can be either a simple redox process such as the oxidation of carbon to yield carbon dioxide or the reduction of carbon by hydrogen to yield methane (CH4), or it can be a complex process such as the oxidation of sugar in the human body through a series of very complex electron transfer processes.

The term redox comes from the two concepts of reduction and oxidation. It can be explained in simple terms:

Though sufficient for many purposes, these descriptions are not precisely correct. Oxidation and reduction properly refer to a change in oxidation number — the actual transfer of electrons may never occur. Thus, oxidation is better defined as an increase in oxidation number, and reduction as a decrease in oxidation number. In practice, the transfer of electrons will always cause a change in oxidation number, but there are many reactions that are classed as "redox" even though no electron transfer occurs (such as those involving covalent bonds).

Non-redox reactions, which do not involve changes in formal charge, are known as metathesis reactions.

This text uses material from Wikipedia, licensed under CC BY-SA