Researchers map structure of mitochondria at different life stages

Mitochondria, organelles with an inner and outer membrane, are responsible for creating the energy that cells use to survive, and their morphology is key to accomplishing this task. The inner mitochondrial membrane contains ...

Operando spectroscopy provides a window on water oxidation

Iridium oxide catalysts are effective for water oxidation making them very attractive for green technologies. A team including researchers from SANKEN (The Institute of Scientific and Industrial Research) at Osaka University ...

page 1 from 3

Redox

Redox (shorthand for reduction-oxidation reaction) describes all chemical reactions in which atoms have their oxidation number (oxidation state) changed. This can be either a simple redox process such as the oxidation of carbon to yield carbon dioxide or the reduction of carbon by hydrogen to yield methane (CH4), or it can be a complex process such as the oxidation of sugar in the human body through a series of very complex electron transfer processes.

The term redox comes from the two concepts of reduction and oxidation. It can be explained in simple terms:

Though sufficient for many purposes, these descriptions are not precisely correct. Oxidation and reduction properly refer to a change in oxidation number — the actual transfer of electrons may never occur. Thus, oxidation is better defined as an increase in oxidation number, and reduction as a decrease in oxidation number. In practice, the transfer of electrons will always cause a change in oxidation number, but there are many reactions that are classed as "redox" even though no electron transfer occurs (such as those involving covalent bonds).

Non-redox reactions, which do not involve changes in formal charge, are known as metathesis reactions.

This text uses material from Wikipedia, licensed under CC BY-SA