Molecular motor mystery solved: Novel protein rounds out plant cells' machinery

March 14, 2018 by Steve Lundeberg, Oregon State University

A research team led by an Oregon State University biophysicist and a plant biologist from University of California, Davis has discovered a novel motor protein that significantly expands current understanding of the evolution and design principle of motor proteins.

The findings of the research team, led by Weihong Qiu of the OSU College of Science and Bo Liu ¬of UC Davis, were published today in Nature Communications.

Using an analogy to a metropolitan city, the interior of eukaryotic cells contain a railway-like structure called the cytoskeleton and tiny vehicles called motor proteins. Motor proteins act on the cytoskeleton tracks to generate forces and directional movement for many essential processes, such as transportation of cellular "cargoes" and separation of duplicated chromosomes during cell division.

Cells from human, animals and fungi all have three different types of that scientists refer to as myosin, kinesin and . Kinesin and dynein move on the same cytoskeleton track and normally in opposite directions.

"What we've found is the first kinesin-14 motor from land plants that has the ability to move continuously on the cytoskeleton track on its own," said Qiu.

"Kinesin-14s - a subset of - have the same directional preference as the dynein motor," he said. "However, dynein ends up being a major motor in that direction because kinesin-14 motors lack the ability of dynein to generate persistent motility on the cytoskeleton track."

Scientists have long speculated that land plants might have evolved into unconventional kinesin-14s that have the ability to generate persistent motility on their own. Land plants do not have dynein. But they have many kinesin-14 motors, said Qiu.

Driven by that, researchers explored land plants, trying to find some novel kinesin-14s that could potentially compensate for the loss of dynein in land plants.

"This work is an important discovery in the field of biological motors in recent years," said Qiu, whose work looked at Oryza sativa, most often referred to simply as rice.

"This expands our knowledge of the design and operation principles of molecular motors," he said. "Land offer a rich source for us to understand the entire evolution of these molecular motors. And some , if not all, have evolved novel kinesin-14 motors to potentially compensate for the loss of dynein."

Explore further: The motor protein dancing in all our cells

More information: Kuo-Fu Tseng et al, The preprophase band-associated kinesin-14 OsKCH2 is a processive minus-end-directed microtubule motor, Nature Communications (2018). DOI: 10.1038/s41467-018-03480-w

Related Stories

The motor protein dancing in all our cells

September 26, 2017

Motor proteins drive many of the essential processes in our cells. They move with a dancing motion, as Professor Erik Schäffer and his team have shown in a new study. In order to observe the tiny proteins, which are measured ...

A nano-gear in a nano-motor inside you

January 17, 2013

Diverse cellular processes require many tiny force-generating motor proteins to work in a team. Paradoxically, nature often chooses the weak and inefficient dynein motor to generate large persistent forces inside cells. Here ...

Revealing the inner workings of a molecular motor

January 12, 2015

In research published in the Journal of Cell Biology, scientists from the RIKEN Brain Science Institute in Japan have made important steps toward understanding how dynein—a "molecular motor"—walks along tube-like structures ...

Recommended for you

Researchers measure gene activity in single cells

March 16, 2018

For biologists, a single cell is a world of its own: It can form a harmonious part of a tissue, or go rogue and take on a diseased state, like cancer. But biologists have long struggled to identify and track the many different ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.