The first precise measurement of a single molecule's effective charge

January 15, 2018, Swiss National Science Foundation
Scientists can determine the effective electrical charge of a molecule by trapping it in a potential well by measuring how long it stays inside. Credit: Madhavi Krishnan / University of Zurich

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve interactions between molecules like proteins, where their charge plays an essential role. Yet, the charge of a in an aqueous environment – its natural context in a living organism – is hard to determine accurately using traditional approaches.

Madhavi Krishnan, who holds an SNSF professorship at the University of Zurich, has developed a method to precisely measure the charge of a single molecule in solution. Her advance was described in a series of articles in Nature Nanotechnology, Physical Review E and the Journal of Chemical Physics. This discovery could pave the way to new since, at a chemical level, many diseases are linked to a shift in a protein's , which prevents the molecule from acting the way it should.

A molecule's electrical charge can be quite different in the gas phase and in solution. The reason for this difference lies in complex interactions between the object and the surrounding liquid. Hence, standard gas-phase measurements do not directly yield information on the molecule's behaviour in its biological context.

"Like kids kicking a ball"

Molecules in solution are in constant motion, randomly kicking each other. Krishnan and Ph.D. student Francesca Ruggeri took advantage of this well-known phenomenon, called Brownian motion, in order to measure the effective charge of a molecule directly in solution.

First, they trapped the molecule in a "potential well". Rather than an actual well, this is a situation where the potential energy of the molecule is at its minimum. In such a situation, bouncing continuously attempt to expel the molecule from the well.

"It is like kids playing with a ball at the bottom of a pit," explains Krishnan. "The ball is the molecule we are interested in, and the children are the water . The ball would have to receive quite a hard kick in order to fly out of the pit."

The higher the effective charge of the molecule, the greater the depth of the potential well and, consequently, the lower the likelihood that the molecule is ejected from the well. In practice, this means that the time needed for the molecule to be kicked out of the well is directly related to its effective charge.

"Ultimately it boils down to a statistical principle," explains Krishnan. "If we know how long a molecule remains trapped in the well, we know precisely how deep the well is. And since this depth depends directly on the molecule's effective charge, we can deduce this value very precisely too."

Two glass plates

In order to create a potential well, scientists compressed a solution containing the proteins between two glass plates, one of them being covered with microscopic holes. Molecules trapped in potential wells were labelled with fluorescent agents, which allowed them to be tracked with an optical microscope.

While the discovery has important fundamental implications, it could also pave the way towards novel diagnostic tools for many diseases caused by misshaped proteins, such as Alzheimer's and cancers. "We know that the 3-D conformation of a protein influences its effective charge, and our work might present a novel route to detecting defective proteins."

Explore further: Researchers measure the electrical charge of nano particles

More information: Francesca Ruggeri et al. Single-molecule electrometry, Nature Nanotechnology (2017). DOI: 10.1038/nnano.2017.26

M. Krishnan. A simple model for electrical charge in globular macromolecules and linear polyelectrolytes in solution, The Journal of Chemical Physics (2017). DOI: 10.1063/1.4983485

F. Ruggeri et al. Spectrally resolved single-molecule electrometry, The Journal of Chemical Physics (2017). DOI: 10.1063/1.5008936

Related Stories

Researchers measure the electrical charge of nano particles

July 30, 2012

Nano particles are a millionth of a millimeter in size, making them invisible to the human eye. Unless, that is, they are under the microscope of Prof. Madhavi Krishnan, a biophysicist at the University of Zurich. Prof. Krishnan ...

Precisely defined polymer chains now a reality

September 21, 2017

Manufactured polymers are ubiquitous in the market. These large molecules are used for synthetic clothing, rubbers and glues, and anything made of plastic. However, the material properties exhibited by man-made polymers rely ...

Biophysicists unravel exact folding of a single gene

December 1, 2017

The way genes are folded determines their activity in our body. Leiden University biophysicists are now the first to unravel this structure molecule-by-molecule. Publication on December 1st in Nature's Scientific Reports.

Recommended for you

World's oldest cheese found in Egyptian tomb

August 15, 2018

Aging usually improves the flavor of cheese, but that's not why some very old cheese discovered in an Egyptian tomb is drawing attention. Instead, it's thought to be the most ancient solid cheese ever found, according to ...

Molecular switch detects metals in the environment

August 15, 2018

An international team led by researchers from the University of Geneva (UNIGE), Switzerland, has designed a family of molecules capable of binding to metal ions present in the surrounding environment and providing an easily ...

A near-infrared fluorescent dye for long term bioimaging

August 15, 2018

A group of chemists at the Institute of Transformative Bio-Molecules (ITbM), Nagoya University, has developed a new near infrared (NIR) emitting photostable fluorescent dye PREX 710 (photo-resistant xanthene dye which can ...

Lipid droplets play crucial roles beyond fat storage

August 14, 2018

Lipid droplets: they were long thought of merely as the formless blobs of fat out of which spare tires and muffin tops were made. But these days, they're "a really hot area of research," says Michael Welte, professor and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.