The protein TAZ sends 'mixed signals' to stem cells

September 6, 2017
The protein TAZ (green) in the cytoplasm (the region outside of the nuclei, blue) promotes the self-renewal of human embryonic stem cells. Credit: Xingliang Zhou/Ying Lab, USC Stem Cell

Just as beauty exists in the eye of the beholder, a signal depends upon the interpretation of the receiver. According to new USC research published in Stem Cell Reports, a protein called TAZ can convey very different signals—depending upon not only which variety of stem cell, but also which part of the stem cell receives it.

When it comes to varieties, some stem are "naïve" blank slates; others are "primed" to differentiate into certain types of more specialized cells. Among the truly naïve are (ESCs), while the primed variety includes the slightly more differentiated mouse epiblast stem cells (EpiSCs) as well as so-called human "ESCs"—which may not be true ESCs at all.

In the new study, PhD student Xingliang Zhou and colleagues in the laboratory of Qi-Long Ying demonstrated that naïve mouse ESCs don't require TAZ in order to self-renew and produce more stem cells. However, they do need TAZ in order to differentiate into mouse EpiSCs.

The scientists observed an even more nuanced situation for the primed varieties of stem cells: mouse EpiSCs and human ESCs. When TAZ is located in the nucleus, this prompts primed stem cells to differentiate into more specialized cell types—a response similar to that of the naïve cells. However, if TAZ is in the cytoplasm, or the region between the nucleus and outer membrane, primed stem cells have the opposite reaction: they self-renew.

"TAZ has stirred up a lot of controversy in our field, because it appears to produce diverse and sometimes opposite effects in ," said Ying, senior author and associate professor of and regenerative medicine. "It turns out that TAZ can indeed produce opposite effects, depending upon both its subcellular location and the cell type in question."

First author Zhou added: "TAZ provides a new tool to stimulate to either differentiate or self-renew. This could have important regenerative medicine applications, including the development of a better way to generate the desired cell types for cell replacement therapy."

Explore further: Study reveals how to better master stem cells' fate

More information: Xingliang Zhou et al, Cytoplasmic and Nuclear TAZ Exert Distinct Functions in Regulating Primed Pluripotency, Stem Cell Reports (2017). DOI: 10.1016/j.stemcr.2017.07.019

Related Stories

Study reveals how to better master stem cells' fate

October 24, 2013

(Phys.org) —USC scientist Qi-Long Ying and a team of researchers have long been searching for biotech's version of the fountain of youth—ways to encourage embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) to ...

Vitamins and aminoacids regulate stem cell biology

February 16, 2017

An International Reserach Team coordinated by Igb-Cnr has discovered a key role of vitamins and amino acids in pluripotent stem cells. The research is published in Stem Cell Reports, and may provide new insights in cancer ...

Scientists identify "naïve-like" human stem cell

October 16, 2014

Scientists from our university and Berlin have identified a type of human stem cell that appears to be "naïve-like" – able to develop into any type of cell. The discovery of this cell type could potentially have a large ...

Recommended for you

Tasmanian tiger doomed long before humans came along

December 12, 2017

The Tasmanian tiger was doomed long before humans began hunting the enigmatic marsupial, scientists said Tuesday, with DNA sequencing showing it was in poor genetic health for thousands of years before its extinction.

Searching for the CRISPR Swiss-army knife

December 12, 2017

Scientists at the University of Copenhagen, led by the Spanish Professor Guillermo Montoya, are investigating the molecular features of different molecular scissors of the CRISPR-Cas system to shed light on the so-called ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.