Lab-created antibody could hold the secret to making stem cell therapy safer

June 15, 2017, Agency for Science, Technology and Research (A*STAR), Singapore
Lab-created antibody could hold the secret to making stem cell therapy safer
Researchers from the A*STAR Bioprocessing Technology Institute involved in the study. Credit: A*STAR Bioprocessing Technology Institute

Stem cells have paved the way for a new era in regenerative medicine, but their use is fraught with risk. Now, A*STAR scientists have developed an antibody that could make stem cell therapy safer.

Human that can differentiate in a petri dish to become any cell needed to repair tissues and organs, hold great promise. Since the first human were isolated in 1998, scientists have edged closer to developing 'cell therapy' for humans. In early 2017, a Japanese man became the first patient to receive a retina transplant made of reprogrammed pluripotent stem cells to treat macular degeneration.

These potential rewards come with great risk. Differentiating stem cells into other cell types is an imperfect process, and any stem cells that remain in a culture of transplanted cells can form dangerous by-products, including tumors, such as teratomas.

"If stem cells become a cell therapy product there will be the question of safety," Andre Choo, from the A*STAR Bioprocessing Technology Institute, explains.

Choo and his team are working to make stem cell treatments safer by creating antibodies that 'clean up' the pluripotent stem cells which fail to differentiate.

In 2016, the researchers used a whole-cell immunization strategy to generate different antibodies by injecting mice with viable embryonic stem cells. They then isolated the antibodies and tested their ability to search and destroy pluripotent stem cells in a culture dish.

One antibody, tagged 'A1', was discovered which destroyed pluripotent stem cells in minutes but left other cells unharmed.

Choo's team then focused on how the antibody destroyed its target. The scientists discovered that A1 docks to sugar molecules that are only present on the surface of embryonic stem cells, setting off a signaling cascade that ruptures the stem cell.

"That was quite exciting because it now gives us a view of the mechanism that is responsible for the cell-killing effect," says Choo.

Understanding this mechanism could allow Choo's team to combine the A1 antibody with other treatments to clean from a mixture of differentiated cells even more effectively.

The finding could also pinpoint how best to target against sugar molecules on other unwanted , including .

"We hope that in the near future regenerative medicine will have a place in the clinic," says Choo, who wants this antibody to be part of that process.

The A*STAR-affiliated researchers contributing to this research are from the Bioprocessing Technology Institute. For more information about the team's research, please visit the Stem Cell 1 group webpage.

Explore further: New tools to study the origin of embryonic stem cells

More information: Ji Yun Zheng et al. Excess reactive oxygen species production mediates monoclonal antibody-induced human embryonic stem cell death via oncosis, Cell Death and Differentiation (2017). DOI: 10.1038/cdd.2016.164

Related Stories

New tools to study the origin of embryonic stem cells

March 23, 2017

Researchers at Karolinska Institutet have identified cell surface markers specific for the very earliest stem cells in the human embryo. These cells are thought to possess great potential for replacing damaged tissue but ...

Vitamins and aminoacids regulate stem cell biology

February 16, 2017

An International Reserach Team coordinated by Igb-Cnr has discovered a key role of vitamins and amino acids in pluripotent stem cells. The research is published in Stem Cell Reports, and may provide new insights in cancer ...

Gene key for chemically reprogramming human stem cells

January 26, 2017

Scientists have discovered the gene essential for chemically reprogramming human amniotic stem cells into a more versatile state similar to embryonic stem cells, in research led by UCL and Heinrich Heine University.

Stem cells also rust

October 24, 2016

Oxygen in the air is well known to cause damaging rust on cars through a process known as oxidation. Similarly, a research group at Lund University in Sweden, has now identified that certain cells during embryonic development ...

Recommended for you

Single-cell database to propel biological studies

April 20, 2018

A team at Whitehead Institute and MIT has harnessed single-cell technologies to analyze over 65,000 cells from the regenerative planarian flatworm, Schmidtea mediterranea, revealing the complete suite of actives genes (or ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.