New optogenetic tool moves proteins within cells to study biological changes

April 18, 2016 by Mark Derewicz, University of North Carolina Health Care

Scientists at the University of North Carolina School of Medicine have developed a way to embed light-responsive switches into proteins so that researchers can use lasers to manipulate protein movement and activity within living cells and animals.

Using this technique, the UNC team of scientists forced proteins out of the cell nucleus and into the cytoplasm, where they could no longer do their jobs. The researchers then watched in as the cell responded to its personnel shortfall; the team discovered that the resulting cellular processes were more dynamic than previously expected.

The findings, published today in the journal Nature Chemical Biology, demonstrate the value of new research approaches that can rapidly probe the function of genes and proteins.

"By the time you get your hands on a knockout mouse for a particular gene or , the cells that had that protein have already adapted to their new circumstances of having one of its genes taken away; everything has changed," said senior author Brian Kuhlman, PhD, professor of biochemistry and biophysics. "By using light, we can inactivate a protein instantaneously. We can do it in a specific type of cell, at a specific moment in development. This can give us the resolution we need to truly understand the function of a particular protein."

Typically, when scientists want to learn about a biological system (a cell, organ, or animal), they make a change and then observe what happens. In biology, this is often accomplished by "knocking out" or deleting a specific gene. For instance, a researcher interested in whether a protein is important in cancer might remove the gene for that protein, and look to see how it affects tumor formation. One of the problems with this method is that it creates a permanent change, and therefore the biological system has a chance to compensate before anyone can study it.

Kuhlman and his colleagues wanted to develop a strategy that would allow scientists to rapidly activate (or inactivate) a protein with the pinpoint precision of lasers. The approach is part of a growing discipline called optogenetics, where beams of light can act like the strings of a puppeteer to direct activities within cells. In this study, the researchers decided to use optogenetics to control the activity of proteins by controlling their location.

They started with a called AsLOV2 that changes its shape in response to light. The researchers attached a short amino acid sequence to the protein AsLOV2; this sequence postmarked the protein for the cytoplasm. In the dark, this nuclear export signal remained locked tightly in its "photocage." But when it was bathed in blue light, it was released and sent proteins out of the nucleus.

Lead study author Hayretin Yumerefendi, PhD, a postdoctoral fellow in the Kuhlman lab, fused this construct to a and then expressed these protein chimeras in mouse cells. When he first looked at the cells under the microscope, he could see tiny red fluorescent orbs crowded inside the nucleus. After he exposed the cells to a certain wavelength of light, he found the red dots had traveled into the cytoplasm.

Yumerefendi then embedded these light switches into two proteins called LexA and Bre1 that act on DNA and thus normally reside in the nucleus. In both cases, he found that the proteins traveled into the cytoplasm after photoactivation. What's more, he showed that this move was accompanied by a loss in . Yumerefendi and his colleagues were surprised to learn that the adapted quickly to their new normal. For example, they found that the chemical tags that Bre1 sticks onto DNA disappeared in a matter of minutes when Bre1 was removed with light.

"One of the key discoveries we made was that these , which were thought to be relatively slow, are actually quite dynamic," said Yumerefendi. "They happen on timescales that are 30 times faster than previously thought. Our finding emphasizes how important it is that we develop new ways to watch biological events in real time."

Proteins can play different roles at different stages of development, in different parts of an organism, and during various disease states. Therefore, the researchers are planning to apply their new optogenetic tool to study the function of different proteins and examine how the "behavior" of these proteins changes depending on both time and space.

Explore further: Using light to control protein transport from cell nucleus

More information: Light-induced nuclear export reveals rapid dynamics of epigenetic modifications, Nature Chemical Biology, DOI: 10.1038/nchembio.2068

Related Stories

Using light to control protein transport from cell nucleus

February 15, 2016

Light can be used to control the transport of proteins from the cell nucleus with the aid of a light-sensitive, genetically modified plant protein. Biologists from Heidelberg University and the German Cancer Research Center ...

Recommended for you

In colliding galaxies, a pipsqueak shines bright

February 20, 2019

In the nearby Whirlpool galaxy and its companion galaxy, M51b, two supermassive black holes heat up and devour surrounding material. These two monsters should be the most luminous X-ray sources in sight, but a new study using ...

When does one of the central ideas in economics work?

February 20, 2019

The concept of equilibrium is one of the most central ideas in economics. It is one of the core assumptions in the vast majority of economic models, including models used by policymakers on issues ranging from monetary policy ...

Research reveals why the zebra got its stripes

February 20, 2019

Why do zebras have stripes? A study published in PLOS ONE today takes us another step closer to answering this puzzling question and to understanding how stripes actually work.

Correlated nucleons may solve 35-year-old mystery

February 20, 2019

A careful re-analysis of data taken at the Department of Energy's Thomas Jefferson National Accelerator Facility has revealed a possible link between correlated protons and neutrons in the nucleus and a 35-year-old mystery. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.