Future solar panels

September 2, 2014, University of the Basque Country
Future solar panels
A module to which two cells have been connected in series, powering a toy. Credit: IK4-Ikerlan

Conventional photovoltaic technology uses large, heavy, opaque, dark silicon panels, but this could soon change. The IK4-Ikerlan research centre is working with the UPV/EHU-University of the Basque Country within the X10D European project on new materials to produce solar panels in order to come up with alternatives to the current panels. What is needed to improve the functioning of cells with a large surface are materials that cost less to produce and offer greater energy efficiency.

The we see tend to be rigid and black. Organic , by contrast, enables more translucent and more in a range of colours to be manufactured. But this technology needs to meet certain requirements if it is to be accepted on the market: greater efficiency, longer duration and low production cost. So this research has set out "to analyse the capacity have to absorb solar energy as well as to seek appropriate strategies to move from the lab to actual operations," pointed out Ikerne Etxebarria, a researcher of the UPV/EHU and IK4-Ikerlan. The research team has analysed what the maximum size is for the cells, which must have a , if they are to work properly. 

Various cells with different structures and surfaces have been designed for this purpose. Once the results had been analysed, "we found that in cells of up to approximately 6 cm2 the power was in direct proportion to their . On larger surface areas, however, the performance of the cells falls considerably," stressed Etxebarria, who has reached the following conclusion: to be able to manufacture cells with a large surface area it is necessary to build  modules, to which cells with a smaller surface will be connected in series or in parallel, on the substrate itself.  To manufacture these modules, the layers existing between the electrodes need to be structured, in other words, the cells have to be connected to each other. "Until now, that structuring has been done mechanically or by means of laser but with the risk of damaging the substrate. However, in this research we have developed a new automatic structuring technique," she pointed out.

This technique involves transforming the features of the surface of the substrate. Aim: to improve efficiency Another of the aims of this research was to find a way of manufacturing highly efficient cells. To do this, the first step was to optimize the production process of cells based on different polymers, in order to achieve the maximum efficiency of these materials; secondly, polymers that absorb light at different wavelengths have been used to produce cells with a tandem structure in order to make them more efficient. "Each polymer absorbs light at a different wavelength. The ideal thing would be to take advantage of all the sun's rays, but there is no polymer capable of absorbing the light at all the wavelengths. So to be able to make the most efficient use of the sunlight, one of the possibilities is to build tandem-type structures, in other words, to fit the cells manufactured with different polymers one on top of the other," explained Etxebarria.

These tandem-type structures can be connected in series or in parallel. "We have seen that after many measurements greater efficiency is achieved in the cells installed in series than in the ones fitted in parallel," added the researcher. The production of cells manufactured using polymers or new materials will be much more cost-effective, since these polymers are produced in the laboratory, unlike silicon that has to be mined. Etxebarria works in the laboratory of IK4-Ikerlan trying out different polymers in the quest for suitable materials for manufacturing . "We try out (different) materials in small devices," she pointed out. Many of many types are in fact tried out and the most efficient ones are selected, in other words, those that capture the most and which make the most of it.

Explore further: New research could lead to less expensive solar panels

More information: I. Etxebarria, A. Furlan, J. Ajuria, F. W. Fecher, M. Voigt, C.J. Brabec, M. M. Wienk, L. Slooff, S. Veenstra, J. Gilot, R. Pacios, "Series vs Parallel connected organic tandem solar cells: Cell performance and impact on the design and operation of functional modules," Solar Energy Materials and Solar Cells, 130 (2014) 495-504.

I. Etxebarria, A. Guerrero, J. Albero, G. Garcia-Belmonte, E. Palomares, R. Pacios, Inverted vs standard PTB7:PC70BM organic photovoltaic devices. "The benefit of highly selective and extracting contacts in device performance," Organic Electronics, 15 (2014) 2756-2762.

Related Stories

Inexpensive flexible fiber perovskite solar cells

August 4, 2014

(Phys.org) —Textile solar cells are an ideal power source for small electronic devices incorporated into clothing. In the journal Angewandte Chemie, Chinese scientists have now introduced novel solar cells in the form of ...

New type of solar concentrator doesn't block the view

August 19, 2014

(Phys.org) —A team of researchers at Michigan State University has developed a new type of solar concentrator that when placed over a window creates solar energy while allowing people to actually see through the window.

Recycling old batteries into solar cells

August 18, 2014

This could be a classic win-win solution: A system proposed by researchers at MIT recycles materials from discarded car batteries—a potential source of lead pollution—into new, long-lasting solar panels that provide emissions-free ...

Scientists develop pioneering new spray-on solar cells

August 1, 2014

(Phys.org) —A team of scientists at the University of Sheffield are the first to fabricate perovskite solar cells using a spray-painting process – a discovery that could help cut the cost of solar electricity.

Recommended for you


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.