Advanced molecular 'sieves' could be used for carbon capture

Advanced molecular 'sieves' could be used for carbon capture
Polymer molecular sieves with interconnected pores (in green) for rapid and selective transport of molecules. Credit: Qilei Song

(Phys.org) —Researchers from the University of Cambridge have developed advanced molecular 'sieves' which could be used to filter carbon dioxide and other greenhouse gases from the atmosphere.

Newly-developed synthetic membranes provide a greener and more energy-efficient method of separating gases, and can remove and other from the atmosphere, potentially reducing the cost of capturing carbon dioxide significantly.

The synthetic membranes, made of materials known as polymers of intrinsic microporosity (PIMs), mimic the hourglass-shaped protein channels found in biological membranes in cells. The tiny openings in these molecular 'sieves' – just a few billionths of a metre in size – can be adjusted so that only certain molecules can pass through. Details are published in the journal Nature Communications.

Current methods for separating gases are complex, expensive and energy-intensive. Additionally, conventional polymers, while reliable and inexpensive, are not suitable for large scale applications, as there is a trade-off between low permeability levels and a high degree of selective molecular separation.

Researchers are attempting to develop new methods of energy-efficient and environmental-friendly membrane-separation technology, which is an essential process in everything from water purification to controlling gas emissions.

The team from the University's Cavendish Laboratory, working with researchers from Kyoto University, has developed an alternative approach to generating polymer membranes, 'baking' them in the presence of oxygen, a process known as thermal oxidation.

Inducing a thermal oxidation reaction in the PIMs causes the loosely-packed long chains of polymer molecules to form into a cross-linked network structure, with hourglass-shaped cavities throughout. This structure not only results in a membrane which is more selective to gas molecules, but also the size of necks and cavities can be tuned according to what temperature the PIMs are 'baked' at.

"The secret is that we introduce stronger forces between polymer chains," said Dr Qilei Song of the Cavendish Laboratory, the paper's lead author. "Heating microporous polymers using low levels of oxygen produces a tougher and far more selective membrane which is still relatively flexible, with a gas permeability that is 100 to 1,000 times higher than conventional polymer membranes."

The cross-linked structure also makes these membranes more stable than conventional solution-processed PIMs, which have a twisted and rigid structure - like dried pasta - that makes them unable to pack efficiently. Thermal oxidation and crosslinking reinforces the strength of channels while controlling the size of the openings leading into the cavities, which allows for higher selectivity.

The new is twice as selective for separation carbon dioxide as conventional polymer membranes, but allows carbon dioxide to pass through it a few hundred times faster. These thermally modified PIMs membranes are among molecular sieves with the highest combinations of gas permeability and selectivity. In addition to possible uses for separating carbon dioxide from flue gas emitted from coal-fired power plants, the membranes could also be used in air separation, natural gas processing, hydrogen gas production, or could help make more efficient combustion of fossil fuels and power generation with much lower emissions of air pollutants.

"Basically, we developed a method for making a polymer that can truly contribute to a sustainable environment," said Professor Easan Sivaniah from Kyoto University's Institute for Integrated Cell-Material Sciences (iCeMS).

"This new way of modifying PIMs brings the prospect of large-scale, energy-efficient separation a step closer," said Professor Peter Budd, from the University of Manchester, one of the inventors of PIMs materials.


Explore further

Catching greenhouse gases with advanced membranes

More information: "Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes." Qilei Song, et al. Nature Communications 5, Article number: 4813 DOI: 10.1038/ncomms5813
Journal information: Nature Communications

Citation: Advanced molecular 'sieves' could be used for carbon capture (2014, September 16) retrieved 23 August 2019 from https://phys.org/news/2014-09-advanced-molecular-sieves-carbon-capture.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
0 shares

Feedback to editors

User comments

Sep 16, 2014
Some conventional zeolite 'molecular seives' are excellent at absorbing CO2. When used as column packing in gas chromatography, the CO2 never elutes. When I was doing routine GCs of natural gases (dozens per day), we had developed a special instrument that would automatically increase temperature and reverse flow to backflush the CO2 out the inlet after every run to prevent poisoning the column.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more