Boosting the amount of energy obtained from water

Nov 18, 2009
The principle of generating blue energy by reverse electrodialysis.

The energy generated in places where fresh water and salt water meet is known as blue energy. This is a relatively new but highly promising renewable energy source. Piotr Długołęcki of the University of Twente and the Wetsus centre of excellence for sustainable water technology has further refined the method that is most commonly used to generate blue energy in the Netherlands. This method produces three to four times as much energy as previous processes.

Blue is a promising source of . It is generated in places where fresh water and salt water meet, for example where rivers flow into the sea. Energy is generated by the difference between the salt content of fresh water and that of salt water.

When you dissolve salt in water, it splits into charged particles (ions). Half of these ions carry a positive charge, while the other half are negatively charged. Salt water therefore contains many more charged particles than fresh water, and you can use this difference to generate electricity. One method involves the use of special membranes, which selectively allow either positively or negatively charged particles to pass through. This results in a difference in charge across the membranes, which can be converted into electricity.

This process is known as reverse electrodialysis. Up to 5,000 membranes - each with an area of several square metres - can be set up in a sequential array. In the course of his research into this form of blue energy, Piotr Długołęcki of the University of Twente attempted to optimize the energy yield by focusing specifically on the transport of ions. His improvements have at least doubled, and possibly tripled, the energy output. Piotr carried out his research at Wetsus, a centre of excellence for sustainable water technology.

Shadow effect

Fresh water and salt water flow through the spaces between the membranes. At the interface between the and the membrane, charged particles (ions) pass out of the water and into the membrane. They are then transported through the membrane, to the fresh water side. This takes place in what is known as the diffusion boundary layer. To maximize energy yields, it is vital that the water is well mixed and that it flows smoothly past the membranes. To this end, and to create turbulence in the diffusion boundary layer, mesh-like 'spacers' are inserted into the space between two adjoining membranes. One drawback of using the currently available, standard spacers is that they are unable to transport charged particles.

Accordingly, the part of the membrane that is covered by the spacer cannot be used to generate energy, which results in a lower energy yield. As a result of this 'shadow effect', the effective surface area of membrane available for the production of energy is less than the total area of the membrane.

Piotr Długołęcki investigated ways of minimizing these effects, and of generating the maximum amount of energy from the mixing of seawater and river water. He developed conductive spacers, doubling energy yields at a stroke. He then redoubled the energy yield, by improving the mixing and flow of along the membranes.

Długołęcki's doctoral defence took place on Wednesday 18 November at the Faculty of Science and Technology.

Provided by University of Twente (news : web)

Explore further: Morocco raises 1.7 bn euros for solar plants

add to favorites email to friend print save as pdf

Related Stories

Renewable Energy Made by Mixing Salt and Fresh Water

Sep 02, 2009

(PhysOrg.com) -- When a river flows into the sea, the location is more than just a haven for water commerce. The mixing of fresh and salt water that occurs at an estuary also dissipates energy, as the different ...

'Blue energy' seems feasible and offers considerable benefits

Oct 30, 2009

Generating energy on a large scale by mixing salt and fresh water is both technically possible and practical. The worldwide potential for this clean form of energy - 'blue energy' or 'blue electricity' - is enormous. However, ...

Wastewater produces electricity and desalinates water

Aug 06, 2009

A process that cleans wastewater and generates electricity can also remove 90 percent of salt from brackish water or seawater, according to an international team of researchers from China and the U.S.

Recommended for you

The state of shale

17 hours ago

University of Pittsburgh researchers have shared their findings from three studies related to shale gas in a recent special issue of the journal Energy Technology, edited by Götz Veser, the Nickolas A. DeCecco Professor of Che ...

Website shines light on renewable energy resources

Dec 18, 2014

A team from the University of Arizona and eight southwestern electric utility companies have built a pioneering web portal that provides insight into renewable energy sources and how they contribute to the ...

Better software cuts computer energy use

Dec 18, 2014

An EU research project is developing tools to help software engineers create energy-efficient code, which could reduce electricity consumption at data centres by up to 50% and improve battery life in smart ...

Cook farm waste into energy

Dec 17, 2014

It takes some cooking, but turning farm waste into biofuels is now possible and makes economic sense, according to preliminary research from the University of Guelph.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Mr_Frontier
not rated yet Nov 18, 2009
Hopefully the salmon swimming upstream can squeeze through a membrane. Nevertheless, love the idea since the water and weather cycle has multi-faceted potential for electric generation.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.