New chlorine-tolerant, desalination membrane hopes to boost access to clean water

July 22, 2008

A chemical engineering professor at The University of Texas at Austin is part of a team that has developed a chlorine-tolerant membrane that should simplify the water desalination process, increasing access to fresh water and possibly reducing greenhouse gases.

"If we make the desalination process more efficient with better membranes, it will be less expensive to desalinate a gallon of water, which will expand the availability of clean water around the world," Professor Benny Freeman says.

The research will be published July 28 in the German Chemical Society's journal Angewandte Chemie.

Freeman worked primarily with James E. McGrath of Virginia Tech University and Ho Bum Park of the University of Ulsan in South Korea for more than three years to develop the chlorine-tolerant membrane made of sulfonated copolymers. A patent has been filed.

Chlorine must be added to water to disinfect it to prevent a biofilm (stemming from biological contaminants in the raw water) from forming on the membrane, which would reduce its performance. It is then de-chlorinated prior to sending it through the currently used polyamide membranes, which don't tolerate chlorinated water.

"It promises to eliminate de-chlorination steps that are required currently to protect membranes from attack by chlorine in water," Freeman says. "We believe that even a small increase in efficiency should result in large cost savings."

The development could also have a direct impact on reducing carbon-dioxide emissions, which contribute to global warming.

"Energy and water are inherently connected," Freeman says. "You need water to generate power (cooling water for electric power generation stations) and generation of pure water requires energy to separate the salt from the water. That energy is often generated from the burning of fossil fuels, which leads inevitably to the generation of carbon dioxide. Therefore, if one can make desalination more energy-efficient by developing better membranes, such as those that we are working on, one could reduce the carbon footprint required to produce pure water."

Freeman says McGrath and his research group developed novel materials based on an entirely different platform of membranes than those used today in desalination membranes. These new materials are extremely tolerant to aqueous chlorine so their performance doesn't deteriorate in the presence of chlorine.

"Basically, Dr. McGrath radically changed the chemical composition of the membranes, relative to what is used commercially, and the new membranes do not have chemical linkages in them that are sensitive to attack by chlorine," says Freeman, who holds the Kenneth A. Kobe Professorship in Chemical Engineering and the Paul D. & Betty Robertson Meek & American Petrofina Foundation Centennial Professorship in Chemical Engineering.

Source: University of Texas at Austin

Explore further: Researchers focus on cell membranes to develop Alzheimer's treatments

Related Stories

Oral delivery system could make vaccination needle-free

March 8, 2017

Patients could one day self-administer vaccines using a needleless, pill-sized technology that jet-releases a stream of vaccine inside the mouth, according to a proof-of-concept study conducted at UC Berkeley.

Flexibility is key in mechanism of biological self-assembly

March 17, 2017

A new study has modeled a crucial first step in the self-assembly of cellular structures such as drug receptors and other protein complexes, and found that the flexibility of the structures has a dramatic impact on how fast ...

Adsorbent that can selectively remove water contaminants

January 23, 2017

Professor Cafer T. Yavuz and his team at the Graduate School of Energy, Environment, Water, and Sustainability (EEWS) of Korea Advanced Institute of Science and Technology (KAIST) have developed an adsorbent that can selectively ...

Recommended for you

Wrong-way asteroid plays 'chicken' with Jupiter

March 29, 2017

For at least a million years, an asteroid orbiting the "wrong" way around the sun has been playing a cosmic game of chicken with giant Jupiter and with about 6,000 other asteroids sharing the giant planet's space, says a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.