Prototype hydrogen storage tank maintains extended thermal endurance

Jun 04, 2008
Prototype hydrogen storage tank maintains extended thermal endurance
Salvador Aceves (left) and Tim Ross check out the on-board hydrogen storage tank that powers a prototype hybrid vehicle. Photos by Jacqueline McBride/LLNL

A cryogenic pressure vessel developed and installed in an experimental hybrid vehicle by a Lawrence Livermore National Laboratory research team can hold liquid hydrogen for six days without venting any of the fuel.

Unlike conventional liquid hydrogen (LH2) tanks in prototype cars, the LLNL pressure vessel was parked for six days without venting evaporated hydrogen vapor.

The LLNL development has significantly increased the amount of time it takes to start releasing hydrogen during periods of long-term parking, as compared to today's liquid hydrogen tanks capable of holding hydrogen for merely two to four days.

LH2 tanks hold super-cold liquid hydrogen at around -420 Fahrenheit. Like water boiling in a tea kettle, pressure builds as heat from the environment warms the hydrogen inside. Current automotive LH2 tanks must vent evaporated hydrogen vapor after being parked three to four days, even when using the best thermal insulation available (200 times less conductive than Styrofoam insulation).

In recent testing of its prototype hydrogen tank onboard a liquid hydrogen (LH2) powered hybrid, LLNL's tank demonstrated a thermal endurance of six days and the potential for as much as 15 days, helping resolve a key challenge facing LH2 automobiles.

Today's automotive LH2 tanks operate at low pressure (2-10 atmospheres). The LLNL cryogenic capable pressure vessel is much stronger, and can operate at hydrogen pressures of up to 350 atmospheres (similar to scuba tanks), holding the hydrogen even as the pressure increases due to heat transfer from the environment. This high-pressure capability also means that a vehicle's thermal endurance improves as the tank is emptied, and is able to hold hydrogen fuel indefinitely when it is about one-third full.

Last year, the LLNL experimental hybrid vehicle demonstrated the longest driving distance on a single tank of hydrogen (650 miles). The recent thermal endurance experiments validate the key benefit of cryogenic pressure vessels: They deliver the high density of liquid hydrogen storage without the evaporative losses. These two advantages make LH2 vehicles far more practical in the search for a replacement to today's gasoline-powered automobiles.

Source: Lawrence Livermore National Laboratory

Explore further: Drive system saves space and weight in electric cars

add to favorites email to friend print save as pdf

Related Stories

Smallest possible diamonds form ultra-thin nanothreads

Sep 21, 2014

For the first time, scientists have discovered how to produce ultra-thin "diamond nanothreads" that promise extraordinary properties, including strength and stiffness greater than that of today's strongest ...

Smartgels are thicker than water

Sep 19, 2014

Transforming substances from liquids into gels plays an important role across many industries, including cosmetics, medicine, and energy. But the transformation process, called gelation, where manufacturers ...

The fix is in: Team studies self-healing polymers

Aug 07, 2014

(Phys.org) —A surfboard that seals its own cracks without having to cure in the sun for days. Underwater structures that can be fixed with less work and downtime. Joints that are almost instantly stronger ...

Recommended for you

Drive system saves space and weight in electric cars

Oct 17, 2014

Siemens has developed a solution for integrating an electric car's motor and inverter in a single housing. Until now, the motor and the inverter, which converts the battery's direct current into alternating ...

Dispelling a misconception about Mg-ion batteries

Oct 16, 2014

Lithium (Li)-ion batteries serve us well, powering our laptops, tablets, cell phones and a host of other gadgets and devices. However, for future automotive applications, we will need rechargeable batteries ...

Turning humble seaweed into biofuel

Oct 16, 2014

The sea has long been a source of Norway's riches, whether from cod, farmed salmon or oil. Now one researcher from the Norwegian University of Science and Technology (NTNU) researcher hopes to add seaweed ...

Air Umbrella R&D evolves as shield from pelting rain

Oct 15, 2014

A Chinese R&D team have invented an Air Umbrella which can blast water away from the umbrella's owner. They explain how their invention deflects rain: "Air is everywhere on the earth. The flowing air can ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

hudres
5 / 5 (3) Jun 04, 2008
Outstanding! This is a critical breakthrough for transitioning from the gasoline to the hydrogen transportation paradigm. 73
taliasrider
3 / 5 (3) Jun 05, 2008
It is wonderful to see positive activity toward solving our polution and dependence on fossil fuel, this technology could be here and accessible to everyone, at a reasonable cost, if only our government would see the benefit and get behind it as it has in getting us to Mars!
Lord_jag
not rated yet Jun 13, 2008
Now all we need are rooftop solar collectors and in-basement hydrogen cells with some good compressors. Free fuel anyone?