New study offers insight into how life can adapt and potentially be reinvented

March 8, 2016
Escherichia coli. Credit: Rocky Mountain Laboratories, NIAID, NIH

A new study from Princeton has revealed how a synthetic protein revives E. coli cells that lack a life-sustaining gene, offering insight into how life can adapt to survive and potentially be reinvented.

Researchers in the Hecht lab discovered the unexpected way in which a synthetic called SynSerB promotes the growth of cells that lack the natural SerB gene, which encodes an enzyme responsible for the last step in the production of the essential amino acid serine. The findings were published in the Proceedings of the National Academy of Sciences.

The Hecht group first discovered SynSerB's ability to rescue serine-depleted E. coli cells in 2011. At that time, they also discovered several other de novo proteins capable of rescuing the deletions of three other essential proteins in E. coli. "These are novel proteins that have never existed on Earth, and aren't related to anything on Earth yet they enable life to grow where it otherwise would not," said Michael Hecht, professor of chemistry at Princeton and corresponding author on the article.

Natural proteins are complex molecular machines constructed from a pool of twenty different amino acids. Typically they range from several dozen to several hundred amino acids in length. In principle, there are more possible protein sequences than atoms in the universe, but through evolution Nature has selected just a small fraction to carry out the cellular functions that make life possible.

"Those proteins must be really special," Hecht said. "The driving question was, 'Can we do that in the laboratory? Can we come up with non-natural sequences that are that special, from an enormous number of possibilities?"

To address this question, the Hecht lab developed a library of non-natural proteins guided by a concept called binary design. The idea was to narrow down the number of possible sequences by choosing from eleven select amino acids that were divided into two groups: polar and non-polar. By using only the polar or non-polar characteristics of those amino acids, the researchers could design a plethora of novel proteins to fold into a particular shape based on their affinity to and repulsion from water. Then, by allowing the specific positions to have different amino acids, the researchers were able to produce a diverse library of about one million proteins, each 102 long.

"We had to focus on certain subsets of proteins that we knew would fold and search there first for function," said Katie Digianantonio, a graduate student in the Hecht lab and first author on the paper. "It's like instead of searching the whole universe for life, we're looking in specific solar systems."

Having found several non-natural proteins that could rescue specific cell lines, this latest work details their investigation specifically into how SynSerB promotes cell growth. The most obvious explanation, that SynSerB simply catalyzed the same reaction performed by the deleted SerB gene, was discounted by an early experiment.

To discern SynSerB's mechanism among the multitude of complex biochemical pathways in the cell, the researchers turned to a technique called RNA sequencing. This technique allowed them to take a detailed snapshot of the serine-depleted E. Coli cells with and without their and compare the differences.

"Instead of guessing and checking, we wanted to look at the overall environment to see what was happening," Digianantonio said. The RNA sequencing experiment revealed that SynSerB induced overexpression of a protein called HisB, high levels of which have been shown to promote the key reaction normally performed by the missing gene. By enlisting the help of HisB, the non-natural protein was able to induce the production of serine, which ultimately allowed the cell to survive.

"Life is opportunistic. Some proteins are going to work by acting similarly to what they replaced and some will find another pathway," Hecht said. "Either way it's cool."

Explore further: New simple proteins play active role in cellular function

More information: Katherine M. Digianantonio et al. A protein constructed de novo enables cell growth by altering gene regulation, Proceedings of the National Academy of Sciences (2016). DOI: 10.1073/pnas.1600566113

Fisher, M. A.; McKinley, K. L.; Bradley, L. H; Viola, S. R; Hecht, M. H. "De Novo designed proteins from a library of artificial sequences function in Escherichia Coli and enable cell growth." PLoS One 2011, 6(1): e15364.

Related Stories

New simple proteins play active role in cellular function

August 11, 2015

Yale scientists have developed simple new proteins almost devoid of chemical diversity that still play a surprisingly active and specific role in cellular function, causing cells to act like cancer cells, they report Aug. ...

Researchers find out what cancer cells are hungry for

February 15, 2016

Growing tumour cells are always hungry. Researchers of prof. Reuven Agami's group at the Antoni van Leeuwenhoek have developed a method that uncovers for individual tumours which amino acid is most limiting an thus most needed ...

Scientists construct synthetic proteins that sustain life

January 6, 2011

( -- In a groundbreaking achievement that could help scientists "build" new biological systems, Princeton University scientists have constructed for the first time artificial proteins that enable the growth of ...

New clues to how gatekeeper for the cell nucleus works

November 6, 2015

Scientists from the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have uncovered new clues to how a molecular machine inside the cell acts as a gatekeeper, allowing some molecules to enter ...

Recommended for you

Ten months in the air without landing

October 27, 2016

Common swifts are known for their impressive aerial abilities, capturing food and nest material while in flight. Now, by attaching data loggers to the birds, researchers reporting in the Cell Press journal Current Biology ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.