Self-cooling solar cells boost power, last longer

Jul 22, 2014
Self-cooling solar cells boost power, last longer
This drawing demonstrates how solar cells cool themselves by shepherding away unwanted thermal radiation. The pyramid structures made of silica glass provide maximal radiative cooling capability. Credit: L. Zhu, Stanford University.

Scientists may have overcome one of the major hurdles in developing high-efficiency, long-lasting solar cells—keeping them cool, even in the blistering heat of the noonday Sun.

By adding a specially patterned layer of silica glass to the surface of ordinary solar cells, a team of researchers led by Shanhui Fan, an electrical engineering professor at Stanford University in California has found a way to let solar cells cool themselves by shepherding away unwanted thermal radiation. The researchers describe their innovative design in the premiere issue of The Optical Society's (OSA) new open-access journal Optica.

Solar cells are among the most promising and widely used on the market today. Though readily available and easily manufactured, even the best designs convert only a fraction of the energy they receive from the Sun into usable electricity.

Part of this loss is the unavoidable consequence of converting sunlight into electricity. A surprisingly vexing amount, however, is due to solar cells overheating.

Under normal operating conditions, solar cells can easily reach temperatures of 130 degrees Fahrenheit (55 degrees Celsius) or more. These harsh conditions quickly sap efficiency and can markedly shorten the lifespan of a solar cell. Actively cooling solar cells, however—either by ventilation or coolants—would be prohibitively expensive and at odds with the need to optimize exposure to the Sun.

The newly proposed design avoids these problems by taking a more elegant, passive approach to cooling. By embedding tiny pyramid- and cone-shaped structures on an incredibly thin layer of , the researchers found a way of redirecting unwanted heat—in the form of infrared radiation—from the surface of solar cells, through the atmosphere, and back into space.

"Our new approach can lower the operating temperature of solar cells passively, improving significantly and increasing the life expectancy of solar cells," said Linxiao Zhu, a physicist at Stanford and lead author on the Optica paper. "These two benefits should enable the continued success and adoption of ."

Solar cells work by directly converting the Sun's rays into electrical energy. As photons of light pass into the semiconductor regions of the solar cells, they knock off electrons from the atoms, allowing electricity to flow freely, creating a current. The most successful and widely used designs, silicon semiconductors, however, convert less than 30 percent of the energy they receive from the Sun into electricity – even at peak efficiency.

The solar energy that is not converted generates waste heat, which inexorably lessens a solar cell's performance. For every one-degree Celsius (1.8 degree F) increase in temperature, the efficiency of a solar cell declines by about half a percent.

"That decline is very significant," said Aaswath Raman, a postdoctoral scholar at Stanford and co-author on the paper. "The solar cell industry invests significant amounts of capital to generate improvements in efficiency. Our method of carefully altering the layers that cover and enclose the solar cell can improve the efficiency of any underlying solar cell. This makes the design particularly relevant and important."

In addition, solar cells "age" more rapidly when their temperatures increase, with the rate of aging doubling for every increase of 18 degrees Fahrenheit.

To passively cool the solar cells, allowing them to give off excess heat without spending energy doing so, requires exploiting the basic properties of light as well as a special infrared "window" through Earth's atmosphere.

Different wavelengths of light interact with solar cells in very different ways—with being the most efficient at generating electricity while infrared is more efficient at carrying heat. Different wavelengths also bend and refract differently, depending on the type and shape of the material they pass through.

The researchers harnessed these basic principles to allow visible light to pass through the added silica layer unimpeded while enhancing the amount of energy that is able to be carried away from the solar cells at thermal wavelengths.

"Silica is transparent to visible light, but it is also possible to fine-tune how it bends and refracts light of very specific wavelengths," said Fan, who is the corresponding author on the Optica paper. "A carefully designed layer of silica would not degrade the performance of the solar cell but it would enhance radiation at the predetermined thermal wavelengths to send the solar cell's heat away more effectively."

To test their idea, the researchers compared two different silica covering designs: one a flat surface approximately 5 millimeters thick and the other a thinner layer covered with pyramids and micro-cones just a few microns (one-thousandth of a millimeter) thick in any dimension. The size of these features was essential. By precisely controlling the width and height of the pyramids and micro-cones, they could be tuned to refract and redirect only the unwanted infrared wavelengths away from the solar cell and back out into space.

"The goal was to lower the operating temperature of the solar cell while maintaining its solar absorption," said Fan. "We were quite pleased to see that while the flat layer of silica provided some passive cooling, the patterned layer of silica considerably outperforms the 5 mm-thick uniform silica design, and has nearly identical performance as the ideal scheme."

Zhu and his colleagues are currently fabricating these devices and performing experimental tests on their design. Their next step is to demonstrate radiative cooling of solar cells in an outdoor environment. "We think that this work addresses an important technological problem in the operation and optimization of ," he concluded, "and thus has substantial commercialization potential."

Explore further: Boosting solar cell efficiency: Engineers design new optical element to sort sunlight

More information: L. Zhu, A. Raman., K. Wang, M. Anoma, S. Fan, "Radiative Cooling of Solar Cells," Optica 1, 32-38 (2014).

add to favorites email to friend print save as pdf

Related Stories

A new stable and cost-cutting type of perovskite solar cell

Jul 17, 2014

Perovskite solar cells show tremendous promise in propelling solar power into the marketplace. The cells use a hole-transportation layer, which promotes the efficient movement of electrical current after exposure to sunlight. ...

Recommended for you

First-of-a-kind supercritical CO2 turbine

19 hours ago

Toshiba Corporation today announced that it will supply a first-of-a-kind supercritical CO2 turbine to a demonstration plant being built in Texas, USA. The plant will be developed by NET Power, LLC, a U.S. venture, together w ...

Drive system saves space and weight in electric cars

Oct 17, 2014

Siemens has developed a solution for integrating an electric car's motor and inverter in a single housing. Until now, the motor and the inverter, which converts the battery's direct current into alternating ...

Dispelling a misconception about Mg-ion batteries

Oct 16, 2014

Lithium (Li)-ion batteries serve us well, powering our laptops, tablets, cell phones and a host of other gadgets and devices. However, for future automotive applications, we will need rechargeable batteries ...

Turning humble seaweed into biofuel

Oct 16, 2014

The sea has long been a source of Norway's riches, whether from cod, farmed salmon or oil. Now one researcher from the Norwegian University of Science and Technology (NTNU) researcher hopes to add seaweed ...

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

4.6 / 5 (7) Jul 22, 2014
Be better if turned the heat into power.
Jul 22, 2014
This comment has been removed by a moderator.
5 / 5 (3) Jul 23, 2014
Be better if turned the heat into power.

Turning heat into usable power still requires a thermal gradient. So passive cooling would still need to be present in order to maintain an ideal gradient. Otherwise everything would simply be hot, and there wouldn't be a cold area to extract energy from the difference.

Hence, the work done here in attempting to increase passive thermal cooling.
3 / 5 (2) Jul 24, 2014
Quantum Dot Solar Cells can contain IR QD that absorb IR rays and are able to turn them into electric energy rather than heat loss. Increased absorption and less heat generation. A solar cell completely made of IR QD could collect energy at night or in the arctic 6 months of darkness. You would need cheap mass produced quantum dots and a roll to roll printing press.
Its' probably closer to reality than you think.
5 / 5 (3) Jul 25, 2014
This solution creates a solar cell that holds dirt and needs regular cleaning.
Wouldn't a planar solution such as a dichroic heat mirror layer be more practical?