Study shows forward osmosis desalination not energy efficient

Jul 24, 2014 by Alissa Mallinson

In a recent study published in the Journal of Membrane Science, MIT professor John Lienhard and postdoc Ronan McGovern, both of the Department of Mechanical Engineering, reported that, contrary to popular support, forward osmosis desalination of seawater is significantly less energy efficient, compared to reverse osmosis.

In forward osmosis, water is drawn from the seawater into a concentrated salt solution, known as a draw solution. Then, a second step is required to regenerate the concentrated draw solution and produce purified water. With reverse osmosis, the seawater is directly desalinated by being pressurized and driven through a membrane that only allows water to pass through.

McGovern performed an energetic comparison of reverse osmosis and forward osmosis to identify their respective energy consumptions. The problem, he says, is that even if the second step of draw regeneration—in which the concentrated salt solution is dewatered, producing fresh water—can achieve the same level of efficiency as the reverse osmosis process, the actual energy consumption of forward osmosis will consistently surpass that of reverse osmosis. This is because the salt solution that results from the first step of forward osmosis is necessarily more highly concentrated than standard , meaning it always requires a higher level of energy for regeneration.

According to McGovern, forward osmosis is better suited to alternate applications, such as the production of hydration drinks. In such applications, only the first step of the forward osmosis process is required—where a concentrated sugar syrup is diluted to a desirable level—placing forward osmosis at an advantage to .

Explore further: Research makes desalination cheaper and greener

More information: Ronan K. McGovern, John H. Lienhard V, "On the potential of forward osmosis to energetically outperform reverse osmosis desalination," Journal of Membrane Science, Volume 469, 1 November 2014, Pages 245-250, ISSN 0376-7388. DOI: 10.1016/j.memsci.2014.05.061.

add to favorites email to friend print save as pdf

Related Stories

From seawater to freshwater with a nanotechnology filter

Jun 01, 2011

In this month's Physics World, Jason Reese, Weir Professor of Thermodynamics and Fluid Mechanics at the University of Strathclyde, describes the role that carbon nanotubes (CNTs) could play in the desalination of wat ...

Energy-efficient water purification

Jan 14, 2009

Water and energy are two resources on which modern society depends. As demands for these increase, researchers look to alternative technologies that promise both sustainability and reduced environmental impact. Engineered ...

Osmosis: Everything you know about it is (probably) wrong

Apr 01, 2013

Osmosis – the flow of a solvent across a semipermeable membrane from a region of lower to higher solute concentration – is a well-developed concept in physics and biophysics. The problem is that, even though the concept ...

Britain unveils desalination plant for London reservoirs

Apr 25, 2011

(PhysOrg.com) -- Britain has brought online a new desalination plant near London capable of providing the city with 150 million gallons (568 million litres) of water per day, should the need arise. At a cost ...

Recommended for you

The state of shale

10 hours ago

University of Pittsburgh researchers have shared their findings from three studies related to shale gas in a recent special issue of the journal Energy Technology, edited by Götz Veser, the Nickolas A. DeCecco Professor of Che ...

Website shines light on renewable energy resources

Dec 18, 2014

A team from the University of Arizona and eight southwestern electric utility companies have built a pioneering web portal that provides insight into renewable energy sources and how they contribute to the ...

Better software cuts computer energy use

Dec 18, 2014

An EU research project is developing tools to help software engineers create energy-efficient code, which could reduce electricity consumption at data centres by up to 50% and improve battery life in smart ...

Cook farm waste into energy

Dec 17, 2014

It takes some cooking, but turning farm waste into biofuels is now possible and makes economic sense, according to preliminary research from the University of Guelph.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.