Pressure cooker on steroids treats human waste

Jul 09, 2013

Like alchemists, engineers from Duke University and the University of Missouri are developing a process to turn sewage into drinkable water, energy and useful byproducts at a cost of less than a nickel per person per day.

In addition to the technological aspects of the project, the researchers are investigating plans to make the technology economically self-sustaining in , since many areas with the greatest are typically urban and low-income. The new approach will operate without connections to water, sewer or electrical lines.

The Bill & Melinda Gates Foundation is supporting the team's efforts with a $1.18 million grant as part of the Reinvent the Toilet Challenge. Researchers expect that a working prototype will have been constructed at Duke in 15 months. It will be tested first in the U.S. and then deployed in South Africa, India or Ghana, depending on the results of ongoing feasibility studies.

"We not only want to design and build the right piece of equipment to improve sanitation, but one that is well-integrated into its community, both economically and socially," said Marc Deshusses, professor of civil and environmental engineering at Duke's Pratt School of Engineering and principal investigator of the project. "We expect the end products of the process will be used by the communities to build businesses that make it self-sustaining."

The proposal is to produce a self-contained "toilet" unit that can be transported to locations overseas in a 20-foot container. The prototype will have the capacity to handle the daily fecal waste of about 1,200 users collected from community centers or neighborhood latrines directly piped or transported to the facility for processing.

Deshusses, who received a grant from the Gates Foundation in 2011 to develop a novel sanitation system for the developing world, describes the technology that powers the process as a "pressure cooker on steroids." The technology behind the proposal is known as supercritical water oxidation (SCWO).

"When you heat water above 705 degrees Fahrenheit under pressure, it becomes a 'supercritical fluid,' thicker than steam but less dense than water," said co-principal investigator William Jacoby, associate professor of biological engineering at Missouri and director of its Carbon Recycling Center. "When we add oxygen to the process, it quickly 'burns up' any carbonaceous materials, including human waste."

Jacoby said that the SCWO process has been used to treat hazardous wastes, such as polychlorinated biphenyls (PCBs) and chemical weapons.

"In terms of human waste, the process is faster than other treatment methods, and it produces hot, and potable, water and excess energy in the form of heat," Jacoby said.

The reaction produces clean water, heat, carbon dioxide, benign salts and nitrogen, which can be used by the community or turned into business opportunities to support the system, the researchers said. For example, the could be used in community showers or clothes-washing facilities and the heat could generate electricity.

While one team of engineers works on the technical aspects of the project, another will work in parallel on developing business plans to make the endeavor feasible not only economically, but also from a regulatory and cultural standpoint.

"The technology to treat the waste is not necessarily low-tech, but it is very sustainable, with no adverse environmental impacts, so our challenge is to make it cost-effective and self-sustaining," said co-principal investigator Jay Golden, who directs Duke's Center for Sustainability & Commerce. He is also on the faculty of Pratt and Duke's Nicholas School of the Environment.

"By working with people on the ground, we'll develop a plan for linking the system and its to specific community needs," Golden said. "More broadly, we'll try to identify other regions where our model can be effectively duplicated."

Explore further: First-of-a-kind supercritical CO2 turbine

add to favorites email to friend print save as pdf

Related Stories

Cranfield to develop innovative waterless toilet

Aug 16, 2012

Cranfield University is to develop a waterless, hygienic toilet with the potential to transform the lives of the 2.5 billion people worldwide without access to basic sanitation, thanks to $800,000 funding from the ‘Re ...

New solarclave uses nanoparticles to create steam

Jul 09, 2013

(Phys.org) —A team of researchers at Rice University has developed a solar powered autoclave based on solar energy and metal and carbon nanoparticles. In their paper published in the journal Proceedings of ...

New toilet technology after 150 years of waste (Update)

Aug 14, 2012

(AP) — These aren't your typical loos. One uses microwave energy to transform human waste into electricity. Another captures urine and uses it for flushing. And still another turns excrement into charcoal.

Recommended for you

First-of-a-kind supercritical CO2 turbine

3 minutes ago

Toshiba Corporation today announced that it will supply a first-of-a-kind supercritical CO2 turbine to a demonstration plant being built in Texas, USA. The plant will be developed by NET Power, LLC, a U.S. venture, together w ...

Drive system saves space and weight in electric cars

Oct 17, 2014

Siemens has developed a solution for integrating an electric car's motor and inverter in a single housing. Until now, the motor and the inverter, which converts the battery's direct current into alternating ...

Dispelling a misconception about Mg-ion batteries

Oct 16, 2014

Lithium (Li)-ion batteries serve us well, powering our laptops, tablets, cell phones and a host of other gadgets and devices. However, for future automotive applications, we will need rechargeable batteries ...

Turning humble seaweed into biofuel

Oct 16, 2014

The sea has long been a source of Norway's riches, whether from cod, farmed salmon or oil. Now one researcher from the Norwegian University of Science and Technology (NTNU) researcher hopes to add seaweed ...

Air Umbrella R&D evolves as shield from pelting rain

Oct 15, 2014

A Chinese R&D team have invented an Air Umbrella which can blast water away from the umbrella's owner. They explain how their invention deflects rain: "Air is everywhere on the earth. The flowing air can ...

User comments : 0