Duckweed as a cost-competitive raw material for biofuel production

Mar 06, 2013
Duckweed as a cost-competitive raw material for biofuel production
Duckweed, the quick-growing plant covering this pond, ranks as an ideal raw material for producing biofuels that could help ease reliance on petroleum and natural gas in the 21st century. Credit: iStockphoto/Thinkstock

The search for a less-expensive, sustainable source of biomass, or plant material, for producing gasoline, diesel and jet fuel has led scientists to duckweed, that fast-growing floating plant that turns ponds and lakes green. That's the topic of a report in ACS' journal Industrial & Engineering Chemistry Research.

Christodoulos A. Floudas, Xin Xiao and colleagues explain that duckweed, an aquatic plant that floats on or near the surface of still or slow-moving freshwater, is ideal as a raw material for biofuel production. It grows fast, thrives in wastewater that has no other use, does not impact the food supply and can be harvested more easily than algae and other aquatic plants. However, few studies have been done on the use of duckweed as a raw material for biofuel production.

They describe four scenarios for duckweed refineries that use proven existing technology to produce gasoline, diesel and kerosene. Those technologies include conversion of biomass to a gas; conversion of the gas to methanol, or wood alcohol; and conversion of methanol to gasoline and other fuels. The results show that small-scale duckweed refineries could produce cost-competitive fuel when the price of oil reaches $100 per barrel. Oil would have to cost only about $72 per barrel for larger duckweed refiners to be cost-competitive.

The article is titled "Thermochemical Conversion of Duckweed to Gasoline, Diesel, and : Process Synthesis and Global Optimization."

Explore further: Intel wireless charging in a bowl coming sooner than later

More information: Thermochemical Conversion of Duckweed Biomass to Gasoline, Diesel, and Jet Fuel: Process Synthesis and Global Optimization, Ind. Eng. Chem. Res., Article ASAP. DOI: 10.1021/ie3034703

Abstract
Duckweed biomass is gasified in a thermochemical-based superstructure to produce gasoline, diesel, and kerosene using a synthesis gas intermediate. The superstructure includes multiple pathways for conversion of the synthesis gas to liquid hydrocarbons via Fischer–Tropsch synthesis or intermediate methanol synthesis. Low-temperature and high-temperature Fischer–Tropsch processes are examined using both iron and cobalt based catalysts. Methanol may be converted to hydrocarbons via the methanol-to-gasoline or methanol-to-olefins processes. The hydrocarbons will be refined into the final liquid products using ZSM-5 catalytic conversion, oligomerization, alkylation, isomerization, hydrotreating, reforming, and hydrocracking. A process synthesis framework is outlined to select the refining pathway that will produce the liquid fuels as the lowest possible cost. A rigorous deterministic branch-and-bound global optimization strategy will be incorporated to theoretically guarantee that the overall cost of the solution chosen by the synthesis framework is within a small fraction of the best possible value. A heat, power, and water integration is incorporated within the process synthesis framework to ensure that the cost of utility production and wastewater treatment are simultaneously included with the synthesis of the core refining processes. The proposed process synthesis framework is demonstrated using four case studies which determine the effect of refinery capacity and liquid fuel composition on the overall system cost, the refinery topological design, the process material/energy balances, and the lifecycle greenhouse gas emissions.

add to favorites email to friend print save as pdf

Related Stories

Duckweed genome sequencing has global implications

Jul 08, 2008

Three plant biologists at Rutgers' Waksman Institute of Microbiology are obsessed with duckweed, a tiny aquatic plant with an unassuming name. Now they have convinced the federal government to focus its attention ...

'Green' gasoline on the horizon?

Jan 13, 2009

University of Oklahoma researchers believe newer, more environmentally friendly fuels produced from biomass could create alternative energy solutions and alleviate dependence on foreign oil without requiring changes to current ...

Fueling the future with renewable gasoline and diesel

Aug 20, 2012

A new process for converting municipal waste, algae, corn stalks and similar material to gasoline, diesel and jet fuel is showing the same promise in larger plants as it did in laboratory-scale devices, the developers reported ...

Coal-based fuels and products hit the refinery

Aug 20, 2007

A variety of end products including jet fuel, gasoline, carbon anodes and heating oil may be possible using existing refineries and combinations of coal and refinery by-products, according to a team of Penn State researchers. ...

Recommended for you

Team improves solar-cell efficiency

Sep 19, 2014

New light has been shed on solar power generation using devices made with polymers, thanks to a collaboration between scientists in the University of Chicago's chemistry department, the Institute for Molecular ...

Calif. teachers fund to boost clean energy bets

Sep 19, 2014

The California State Teachers' Retirement System says it plans to increase its investments in clean energy and technology to $3.7 billion, from $1.4 billion, over the next five years.

Idealistic Norwegian sun trappers

Sep 19, 2014

The typical Norwegian owner of a solar heating system is a resourceful man in his mid-fifties. He is technically skilled, interested in energy systems, and wants to save money and protect the environment.

User comments : 0