Supermarkets: Energy-optimized

Feb 06, 2013
Skylights in the roof reduce power requirements for lighting. Credit: Ralph Kensmann, StartDesign GmbH

Running a supermarket requires a lot of electricity. Long rows of refrigerators have to be kept cool and large areas have to be lit. A new concept enables supermarket operators to cut their energy use by around 25 percent.

Cold air flows out of the long rows of shelves filled with sausages, and fish. Numerous lamps light up the space where daylight barely penetrates. Supermarkets use nearly ten times the energy of a normal household. Researchers at the Fraunhofer Institute for ISE in Freiburg, Germany have now created alternatives. "We have developed an integrated concept in collaboration with property developers, the planning team and manufacturers and as a result, we aim to reduce by 25% in comparison to regular supermarkets", says Nicolas Réhault, Group Leader at ISE.

The main focus of the concept lies in the area of cooling. This is because at approximately 40 to 50%, it represents the largest share of the electricity bill. The freezer-systems have to reliably store pizza, cake, fish, etc. at -25° Celsius, otherwise the goods will spoil. Sausages and cheese must be stored at a maximum of four degrees Celsius. Normally, plug-in freezers are used for this purpose. They generate the required level of refrigeration themselves and pump the produced heat directly into the store – a practical but inefficient method. ISE researchers have now developed a combined central refrigeration system in collaboration with property developers and the planning team. Now, all cooling points are connected to a combined central refrigeration system. The heat is not dissipated into the store but channeled via a three-stage recooling system. During the winter the system recovers the heat via a heat exchanger and uses it to heat the store. Residual heat is channeled via a gas chiller and geothermal in the surrounding area. In doing so heated water is pumped through probes into the ground where the heat is dissipated and the water is fed back cold. The result of this is that freezers and chiller cabinets only require half the electricity of comparable standalone units. Gas and oil-fired boilers are superfluous as heating is provided by the waste heat from the cooling systems. The heating system also has an effect on the ventilation system. The system is no longer required for heating; rather, it is used exclusively for introducing fresh air into the store, and is therefore a third smaller in size.

Carbon dioxide as coolant

The scientists have also optimized the choice of refrigerant, the agent which serves to absorb and transport it to the chilled areas. However between 5 and 15% of the refrigerant leaks out of any system annually. Conventional refrigerants have a high global warming potential, in other words, they contribute to heating the atmosphere. For this reason, the scientists utilized carbon dioxide, which has a global warming potential 3000 to 4000 times less than conventional refrigerants. Up until now, carbon dioxide has rarely been used as a refrigerant as the system must withstand high pressures. Moreover, the efficiency of the system is reduced during hot summer days. In order to compensate for losses at high ambient air temperatures, the experts integrated a third cooling stage in collaboration with their colleagues from Hafner-Muschler. When the sun beats down from the sky, the refrigerant is sub-cooled via a geothermal .

Lighting makes up the second largest share of the . For this reason the scientists employ daylight to illuminate large stores. Light enters the store via triple-glazed skylights. A microscreen is fitted between the individual panes of glass to reflect direct sunlight which allows only indirect light to pass through. Artificial light in the form of lamps is additionally switched on and controlled in relation to the available daylight.

"Part of our concept has already been implemented by Aldi Süd in their new buildings. This enabled 20% energy savings to be achieved during the first year of operation", explains Réhault. "New control strategies have now enabled us to optimize these concept components so that energy savings of 25% will be saved in the second year of operation, compared to a standard branch. This is already very close to our goal of 30%."

Explore further: New battery technology for electric vehicles

add to favorites email to friend print save as pdf

Related Stories

NIST helps heat pumps 'go with the flow' to boost output

Jan 23, 2008

Air-source heat pumps typically deliver 1 1/2 to three times more heating energy to a home than the electric energy they consume. This is possible because heat pumps move heat rather than convert it from a ...

Sunlight with cooling factor

May 03, 2010

Although it sounds like a contradiction in terms, using the power of the sun for refrigeration is proving to be an original energy concept. In Tunisia and Morocco, Fraunhofer research scientists are using ...

Keeping cool using the summer heat

Jan 23, 2009

(PhysOrg.com) -- While most Australians are taking care to shield themselves from the harsh summer heat, scientists from the CSIRO Energy Transformed Flagship are working on ways to harness the sun’s warmth ...

U.S. scientists develop better heat pump

Jan 18, 2007

U.S. homeowners might soon see their electric bills decreasing thanks to an integrated heat pump system developed by the Oak Ridge National Laboratory.

Recommended for you

New battery technology for electric vehicles

6 hours ago

Scientists at the Canadian Light Source are on the forefront of battery technology using cheaper materials with higher energy and better recharging rates that make them ideal for electric vehicles (EVs).

Company powers up with food waste

Nov 19, 2014

Garden products company Richgro is using Western Australian food waste to power their operations in a new zero-waste system.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.