Research on wood formation sheds light on plant biology

August 23, 2012

(Phys.org)—Scientists at North Carolina State University have discovered a phenomenon never seen before in plants while studying molecular changes inside tree cells as wood is formed.

In research published online in the week of Aug. 20, the team found that one member of a family of proteins called transcription factors took control of a cascade of genes involved in forming wood, which includes a substance called lignin that binds fibers together and gives wood its strength.

The controller protein regulated on multiple levels, preventing abnormal or stunted plant growth. And it did so in a novel way.

The controller, a spliced variant of the SND1 family, was found in the outside the . This is abnormal, because transcription factor proteins are always in the nucleus. But when one of the four other proteins in its family group was present, the spliced variant was carried into the nucleus, where it bound to the family member, creating a new type of molecule that suppressed the expression of a cascade of genes.

"This is nothing that's been observed before in plants," says Dr. Vincent Chiang, co-director of NC State's Forest Biotechnology Group with Dr. Ron Sederoff. Chiang's research team was the first to produce a transgenic tree with reduced lignin. High lignin levels are desirable for lumber, but is removed during the process of making paper or manufacturing biofuels.

Chiang, a professor in the College of Natural Resources, described the team's finding as the long-sought path to understanding the hierarchy of for wood formation.

Abstract: Secondary Wall-Associated NAC Domain 1s (SND1s) are (TFs) known to activate a cascade of TF and pathway genes affecting secondary cell wall biosynthesis (xylogenesis) in and poplars. Elevated SND1 transcriptional activation leads to ectopic xylogenesis and stunted growth. Nothing is known about the upstream regulators of SND1. Here we report the discovery of a stem-differentiating xylem (SDX)-specific alternative SND1 splice variant, PtrSND1-A2IR, that acts as a dominant negative of SND1 transcriptional network genes in Populus trichocarpa. PtrSND1-A2IR derives from PtrSND1-A2, one of the four fully spliced PtrSND1 gene family members (PtrSND1-A1, -A2, -B1, and -B2). Each full-size PtrSND1 activates its own gene, and all four full-size members activate a common MYB gene (PtrMYB021). PtrSND1-A2IR represses the expression of its PtrSND1 member genes and PtrMYB021. Repression of the autoregulation of a TF family member by its only splice variant has not previously been reported in plants. PtrSND1-A2IRlacks DNA binding and transactivation abilities but retains dimerization capability. PtrSND1-A2IR is localized exclusively in cytoplasmic foci. In the presence of any full-size PtrSND1 member, PtrSND1-A2IR is translocated into the nucleus exclusively as a heterodimeric partner with full-size PtrSND1s. Our findings are consistent with a model in which the translocated PtrSND1-A2IR lacking DNA-binding and transactivating abilities can disrupt the function of full-size PtrSND1s, making them nonproductive through heterodimerization, and thereby modulating the SND1 transcriptional network. PtrSND1-A2IR may contribute to transcriptional homeostasis to avoid deleterious effects on xylogenesis and plant growth.

Explore further: Scientists to study plant 'switchboards'

Related Stories

Scientists to study plant 'switchboards'

September 3, 2009

A new four-year, $3.72 million grant to North Carolina State University will allow researchers to shed light on an important mystery - how genes impact the type and amount of "glue," known as lignin, produced in trees. Understanding ...

Discovery in liver cancer cells provides new target for drugs

March 22, 2011

Researchers at Virginia Commonwealth University Massey Cancer Center and VCU Institute of Molecular Medicine (VIMM) have discovered a novel mechanism in gene regulation that contributes to the development of a form of liver ...

New research reveals insight into lignin biosynthesis

March 31, 2011

Lignin is the durable biopolymer that gives carrots their fiber and crunch and meat grilled over a campfire its characteristic smoky flavor. Acting as the glue that holds the plant cell wall together, lignin imparts tremendous ...

'TF beacons' may light path to new cancer tests and drugs

September 7, 2011

Scientists are reporting development of a long-sought new way to detect the activity of proteins that bind to the DNA in genes, often controlling the activity of genes in ways that make cells do everything from growing normally ...

Researchers use light to switch on gene expression

May 10, 2012

Imagine being able to control genetic expression by flipping a light switch. Researchers at North Carolina State University are using light-activated molecules to turn gene expression on and off. Their method enables greater ...

Recommended for you

New insights into the production of antibiotics by bacteria

July 31, 2015

Bacteria use antibiotics as a weapon and even produce more antibiotics if there are competing strains nearby. This is a fundamental insight that can help find new antibiotics. Leiden scientists Daniel Rozen and Gilles van ...

Out of the lamplight

July 31, 2015

The human body is governed by complex biochemical circuits. Chemical inputs spur chain reactions that generate new outputs. Understanding how these circuits work—how their components interact to enable life—is critical ...

Cell aging slowed by putting brakes on noisy transcription

July 30, 2015

Working with yeast and worms, researchers found that incorrect gene expression is a hallmark of aged cells and that reducing such "noise" extends lifespan in these organisms. The team published their findings this month in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.