Research on wood formation sheds light on plant biology

Aug 23, 2012

(Phys.org)—Scientists at North Carolina State University have discovered a phenomenon never seen before in plants while studying molecular changes inside tree cells as wood is formed.

In research published online in the week of Aug. 20, the team found that one member of a family of proteins called transcription factors took control of a cascade of genes involved in forming wood, which includes a substance called lignin that binds fibers together and gives wood its strength.

The controller protein regulated on multiple levels, preventing abnormal or stunted plant growth. And it did so in a novel way.

The controller, a spliced variant of the SND1 family, was found in the outside the . This is abnormal, because transcription factor proteins are always in the nucleus. But when one of the four other proteins in its family group was present, the spliced variant was carried into the nucleus, where it bound to the family member, creating a new type of molecule that suppressed the expression of a cascade of genes.

"This is nothing that's been observed before in plants," says Dr. Vincent Chiang, co-director of NC State's Forest Biotechnology Group with Dr. Ron Sederoff. Chiang's research team was the first to produce a transgenic tree with reduced lignin. High lignin levels are desirable for lumber, but is removed during the process of making paper or manufacturing biofuels.

Chiang, a professor in the College of Natural Resources, described the team's finding as the long-sought path to understanding the hierarchy of for wood formation.

Abstract: Secondary Wall-Associated NAC Domain 1s (SND1s) are (TFs) known to activate a cascade of TF and pathway genes affecting secondary cell wall biosynthesis (xylogenesis) in and poplars. Elevated SND1 transcriptional activation leads to ectopic xylogenesis and stunted growth. Nothing is known about the upstream regulators of SND1. Here we report the discovery of a stem-differentiating xylem (SDX)-specific alternative SND1 splice variant, PtrSND1-A2IR, that acts as a dominant negative of SND1 transcriptional network genes in Populus trichocarpa. PtrSND1-A2IR derives from PtrSND1-A2, one of the four fully spliced PtrSND1 gene family members (PtrSND1-A1, -A2, -B1, and -B2). Each full-size PtrSND1 activates its own gene, and all four full-size members activate a common MYB gene (PtrMYB021). PtrSND1-A2IR represses the expression of its PtrSND1 member genes and PtrMYB021. Repression of the autoregulation of a TF family member by its only splice variant has not previously been reported in plants. PtrSND1-A2IRlacks DNA binding and transactivation abilities but retains dimerization capability. PtrSND1-A2IR is localized exclusively in cytoplasmic foci. In the presence of any full-size PtrSND1 member, PtrSND1-A2IR is translocated into the nucleus exclusively as a heterodimeric partner with full-size PtrSND1s. Our findings are consistent with a model in which the translocated PtrSND1-A2IR lacking DNA-binding and transactivating abilities can disrupt the function of full-size PtrSND1s, making them nonproductive through heterodimerization, and thereby modulating the SND1 transcriptional network. PtrSND1-A2IR may contribute to transcriptional homeostasis to avoid deleterious effects on xylogenesis and plant growth.

Explore further: How sweet it is: New tool for characterizing plant sugar transporters

Related Stories

Scientists to study plant 'switchboards'

Sep 03, 2009

A new four-year, $3.72 million grant to North Carolina State University will allow researchers to shed light on an important mystery - how genes impact the type and amount of "glue," known as lignin, produced in trees. Understanding ...

Weill Institute researchers uncover basic cell pathway

May 24, 2011

Although all cells in an organism have the same DNA, cells function differently based on the genes they express. While most studies of gene expression focus on activities in the cell's nucleus, a new Cornell study finds that ...

New research reveals insight into lignin biosynthesis

Mar 31, 2011

Lignin is the durable biopolymer that gives carrots their fiber and crunch and meat grilled over a campfire its characteristic smoky flavor. Acting as the glue that holds the plant cell wall together, lignin ...

Researchers use light to switch on gene expression

May 10, 2012

Imagine being able to control genetic expression by flipping a light switch. Researchers at North Carolina State University are using light-activated molecules to turn gene expression on and off. Their method enables greater ...

Recommended for you

The microbes make the sake brewery

Jul 24, 2014

A sake brewery has its own microbial terroir, meaning the microbial populations found on surfaces in the facility resemble those found in the product, creating the final flavor according to research published ahead of print ...

User comments : 0