Signaling pathway is 'executive software' of airway stem cells

Jun 17, 2011

Researchers at Duke University Medical Center have found out how mouse basal cells that line airways "decide" to become one of two types of cells that assist in airway-clearing duties. The findings could help provide new therapies for either blocked or thinned airways.

“Our work has identified the Notch signaling pathway as a central regulatory ‘switch’ that controls the differentiation of airway basal stem ,” said Jason Rock, Ph.D., lead author and postdoctoral researcher in Brigid Hogan's cell biology laboratory. “Studies like ours will enhance efforts to develop effective genetic, cellular, and molecular therapies for airway diseases - a leading cause of death worldwide.”
 
The work was published in Cell Stem Cell on June 3.
 
Together with the current findings, recent studies suggest that the Notch represents a potential therapeutic target for airway remodeling and lung disease, he said. “Notch is like an executive software package that helps to maintain the delicate balance of the epithelium, the lining of the airway,” said senior author Brigid Hogan, Ph.D., chair of the Duke Department of Cell Biology. “The plays a role in other parts of the body, including neural stem cells, and this is the first time we have seen the results of the Notch pathway in airways. We have also found that the function of Notch signaling is conserved in from human airways.”
 
dictates whether the daughters of basal stem cells assume one of two different fates, Hogan said. Sustained, high levels of Notch pathway activation result in more secretory cells. These make the needed amount of mucus to move out particles that need to be cleared. Low levels of Notch signal lead to ciliated cells, which act as brushes to move the mucus along toward clearance. Notch, however, isn’t required for basal to proliferate and make additional basal cell daughters.
 
Airway disease, including chronic obstructive pulmonary disease, cystic fibrosis, asthma, acute allergies, and transplant complications, can range from fatal to debilitating, so understanding the secrets of how healthy cells can grow, and in the proper amounts, after injury is important. Fifty-five percent of deaths from lung disease result from changes in the small airways, Hogan said.
 
The researchers also demonstrated in this work that the smallest airway branches in humans are the same size and are organized like the largest (tracheal) tubes in mice. The next step for the team is to investigate the behavior of the daughters of basal cells to learn what machinery is involved in making them commit to various lineages, and how this system is coordinated to help restore lung function, Hogan said.

Explore further: How steroid hormones enable plants to grow

Related Stories

Scientists create airway spheres to study lung diseases

Jul 28, 2009

Using both animal and human cells, Duke University Medical Center scientists have demonstrated that a single lung cell can become one of two very different types of airway cells, which could lead to a better understanding ...

Therapy may block expansion of breast cancer cells

Nov 05, 2008

Breast cancer stem cells are known to be involved in therapy resistance and the recurrence of cancerous tumors. A new study appearing in Clinical and Translational Science shows the mechanisms governing stem cell expansion in bre ...

Recommended for you

How steroid hormones enable plants to grow

16 hours ago

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

Surviving the attack of killer microbes

17 hours ago

The ability to find food and avoid predation dictates whether most organisms live to spread their genes to the next generation or die trying. But for some species of microbe, a unique virus changes the rules ...

Histones and the mystery of cell proliferation

18 hours ago

Before cells divide, they create so much genetic material that it must be wound onto spools before the two new cells can split apart. These spools are actually proteins called histones, and they must multiply ...

New discovery: Microbes create dripstones

Aug 18, 2014

According to new research humble, microscopic organisms can create dripstones in caves. This illustrates how biological life can influence the formation of Earth's geology - and the same may be happening ...

User comments : 0