Looking inside nanomaterials in 3 dimensions

May 16, 2011

On May 13 2011, the journal Science published a paper where scientists from Risoe DTU (Denmark), in collaboration with scientists from China and the USA, report a new method for revealing a 3-D picture of the structure inside a material.

Most are composed of millions of small , packed together to form a fully dense solid. The orientations, shapes, sizes and relative arrangement of these crystals are important in determining many material properties.

Traditionally, it has only been possible to see the crystal structure of a material by looking at a cut surface, giving just 2D information. In recent years, x-ray methods have been developed that can be used to look inside a material and obtain a 3D map of the crystal structure. However, these methods have a resolution limit of around 100nm.

In contrast, the newly developed technique now published in Science, allows 3D mapping of the crystal structure inside a material down to nanometer resolution, and can be carried out using a , an instrument found in many research laboratories.

Samples must be thinner than a few hundred . However, this limitation is not a problem for investigations of crystal structures inside nanomaterials, where the average crystal size is less than 100 nanometers, and such materials are investigated all over the world in a search for materials with new and better properties than the materials we use today.

For example, nanomaterials have an extremely high strength and an excellent wear resistance and applications therefore span from microelectronics to gears for large windmills. The ability to collect a 3D picture of the in these materials is an important step in being able to understand the origins of their special properties.

An example of such a 3D map is given in the figure, showing the arrangement of crystals in a 150nm thick nanometal aluminium film. The crystals have identical (arrangement of atoms) but they are orientated in different ways in the 3D sample as illustrated by the labels 1 and 2. The colours represent the orientations of the crystals and each crystal is defined by volumes of the same colour. The individual crystals of various sizes (from a few nm to about 100 nm) and shapes (from elongated to spherical) are clearly seen and mapped with a resolution of 1 nanometer.

An important advantage of such 3D methods is that they allow the changes taking place inside a material to be observed directly. For example, the mapping may be repeated before and after a heat treatment revealing how the structure changes during heating.

This new technique has a resolution 100 times better than existing non-destructive 3D techniques and opens up new opportunities for more precise analysis of the structural parameters in .

Explore further: NIST offers electronics industry two ways to snoop on self-organizing molecules

add to favorites email to friend print save as pdf

Related Stories

Unveiling the structure of microcrystals

Oct 04, 2007

Microcrystals take the form of tiny grains resembling powder, which is extremely difficult to study. For the first time, researchers from the European Synchrotron Radiation Facility (ESRF) and the Centre National ...

Lighting the Way to Better Nanoscale Films

Aug 30, 2004

Most miniature electronic, optical and micromechanical devices are made from expensive semiconductor or ceramic materials. For some applications like diagnostic lab-on-a-chip devices, thin-film polymers may ...

Fabricating 3D Photonic Crystals

Jan 21, 2009

(PhysOrg.com) -- “In photonic crystals, the ability to control the structure of a material in full three dimensional space, allows you to control the way that light flows through it,” John Rogers tells PhysOrg.com. “Thi ...

Paving the Way for Crystal Growth

Mar 07, 2007

In order to study the properties of LBCO superconductors, scientists need to produce large, single crystals of the material - a difficult task that wasn't possible until recently. At the state-of-the-art crystal ...

Recommended for you

Quantum effects in nanometer-scale metallic structures

17 hours ago

Plasmonic devices combine the 'super speed' of optics with the 'super small' of microelectronics. These devices exhibit quantum effects and show promise as possible ultrafast circuit elements, but current ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet May 17, 2011
Interesting article but I miss the figure.
Am I blind?