Lighting the Way to Better Nanoscale Films

August 30, 2004
Polymer Thin Film Crystals

Most miniature electronic, optical and micromechanical devices are made from expensive semiconductor or ceramic materials. For some applications like diagnostic lab-on-a-chip devices, thin-film polymers may provide a cheaper alternative, but the structure and properties of these materials - often no more than a few nanometers (nm) thick - are difficult to determine. In addition, defects in the thin polymer masking materials used to "print" integrated circuits can produce malfunctioning components. Consequently, researchers would like to have a non-invasive method for scanning polymer films for defects at high resolution.

In the Aug. 23 issue of Applied Physics Letters,* researchers at the National Institute of Standards and Technology (NIST) report on an application of a new method for studying ultrathin polymers that makes it possible to visualize defects and structure in these materials and should help improve basic understanding of crystal formation in polymers.

Image: Left: The crystal structure of a thin-film polymer "seaweed" crystal that is about four micrometers wide. Brighter areas indicate parts of the crystal with the greatest "strain." Center: The same crystal with lines superimposed showing the direction of strain between the crystal's atoms. Right: Closeup of the upper left portion of the center image.

Using a special form of near-field scanning optical microscopy, the NIST researchers were able to determine the structure of, and "strain" (stretching between atoms) in, thin-film crystals of polystyrene. Polystyrene is a ubiquitous plastic found in foam cups, CD cases and many other products.

The films examined formed tiny crystals just 15 nm thick and about 1500 nanometers wide, which makes them difficult to study with other optical microscopes. In the NIST experiments, blue-green light was piped through a glass fiber about 50 nm wide and scanned across the sample about 10 nm above the surface. Changes in the polarization of the light (the direction of the wave's electric field) as it transmits through the sample then were used to investigate the material's crystal structure and to map areas of strain.

The NIST results should help scientists choose and improve polymer materials and processes for fabricating a range of microscale and nanoscale plastic devices.

Source: NIST

Explore further: Driving the universal quantum bus

Related Stories

Driving the universal quantum bus

September 13, 2017

NIST scientists have achieved a world record in detecting the intensity of an ultra-faint source of light, equaling the capabilities of the deep-space instruments on the Hubble Space Telescope but operating 100 times faster ...

New design lets micro-clock resonators ring like a bell

August 31, 2017

You can't hear most of them, but the world is running on different kinds of mechanical oscillations. For example, inside the average electronic wristwatch is a sealed canister containing a 3 mm long quartz crystal resonator. ...

Recommended for you

Metacognition training boosts gen chem exam scores

October 20, 2017

It's a lesson in scholastic humility: You waltz into an exam, confident that you've got a good enough grip on the class material to swing an 80 percent or so, maybe a 90 if some of the questions go your way.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.