3-D-printed live cells convert glucose to ethanol, carbon dioxide to enhance catalytic efficiency

March 6, 2019 by Anne M Stark, Lawrence Livermore National Laboratory
An LLNL team 3D printed live yeast cells on lattices. Credit: Lawrence Livermore National Laboratory

Lawrence Livermore National Laboratory (LLNL) researchers have 3-D printed live cells that convert glucose to ethanol and carbon dioxide gas (CO2), a substance that resembles beer, demonstrating a technology that can lead to high biocatalytic efficiency.

Bioprinting living into complex 3-D scaffolds has been widely studied and demonstrated for applications ranging from tissue regeneration to drug discovery to clinical implementation. In addition to mammalian , there is a growing interest in printing functional microbes as .

Microbes are extensively used in industry to convert carbon sources into valuable end-product chemicals that have applications in the food industry, biofuel production, waste treatment and . Using live microbes instead of inorganic catalysts has advantages of mild reaction conditions, self-regeneration, low cost and catalytic specificity.

The new research, which appears as an ACS Editors' Choice article in the journal Nano Letters, shows that the additive manufacturing of live whole-cells can assist in research in microbial behaviors, communication, interaction with the microenvironment and for new bioreactors with high volumetric productivity.

In a , the team printed freeze-dried live biocatalytic yeast cells (Saccharomyces cerevisiae) into porous 3-D structures. The unique engineered geometries allowed the cells to convert glucose to ethanol and CO2 very efficiently and similar to how yeast on its own can be used to make beer. Enabled by this new bio-ink material, the printed structures are self-supporting, with high resolution, tunable cell densities, large scale, high catalytic activity and long-term viability. More importantly, if genetically modified yeast cells are used, high-valuable pharmaceuticals, chemicals, food and biofuels can be produced as well.

"Compared to bulk film counterparts, printed lattices with thin filament and macro-pores allowed us to achieve rapid mass-transfer leading to several-fold increase in ethanol production," said LLNL materials scientist Fang Qian, the lead and corresponding author on the paper. "Our ink system can be applied to a variety of other catalytic microbes to address broad application needs. The bioprinted 3-D geometries developed in this work could serve as a versatile platform for process intensification of an array of bioconversion processes using diverse microbial biocatalysts for production of high-value products or bioremediation applications."

Other Livermore researchers include Cheng Zhu, Jennifer Knipe, Samantha Ruelas, Joshua Stolaroff, Joshua DeOtte, Eric Duoss, Christopher Spadaccini and Sarah Baker. This work was conducted in collaboration with National Renewable Energy Laboratory.

"There are several benefits to immobilizing biocatalysts, including allowing continuous conversion processes and simplifying product purification," said chemist Baker, the other corresponding author on the paper. "This technology gives control over cell density, placement and structure in a living material. The ability to tune these properties can be used to improve production rates and yields. Furthermore, materials containing such high cell densities may take on new, unexplored beneficial properties because the cells comprise a large fraction of the materials."

"This is the first demonstration for 3-D printing immobilized to create chemical reactors," said engineer Duoss, a co-author on the paper. "This approach promises to make ethanol production faster, cheaper, cleaner and more efficient. Now we are extending the concept by exploring other reactions, including combining printed microbes with more traditional chemical reactors to create 'hybrid' or 'tandem' systems that unlock new possibilities."

Explore further: Yeast makes ethanol to prevent metabolic overload

More information: Fang Qian et al. Direct Writing of Tunable Living Inks for Bioprocess Intensification, Nano Letters (2019). DOI: 10.1021/acs.nanolett.9b00066

Related Stories

Yeast makes ethanol to prevent metabolic overload

January 7, 2019

Why do some yeast cells produce ethanol? Scientists have wondered about this apparent waste of resources for decades. Now, University of Groningen scientists think they have a solution: yeast cells produce ethanol as a 'safety ...

Solar panels for yeast cell biofactories

November 15, 2018

Genetically engineered microbes such as bacteria and yeasts have long been used as living factories to produce drugs and fine chemicals. More recently, researchers have started to combine bacteria with semiconductor technology ...

Green production of chemicals for industry

December 12, 2018

Industry consumes large quantities of crude oil to produce basic substances for drugs, cosmetics, plastics, or food. However, these processes consume a lot of energy and produce waste. Biological processes with enzymes are ...

Recommended for you

Physicists discover new class of pentaquarks

March 26, 2019

Tomasz Skwarnicki, professor of physics in the College of Arts and Sciences at Syracuse University, has uncovered new information about a class of particles called pentaquarks. His findings could lead to a new understanding ...

Study finds people who feed birds impact conservation

March 26, 2019

People in many parts of the world feed birds in their backyards, often due to a desire to help wildlife or to connect with nature. In the United States alone, over 57 million households in the feed backyard birds, spending ...

Matter waves and quantum splinters

March 25, 2019

Physicists in the United States, Austria and Brazil have shown that shaking ultracold Bose-Einstein condensates (BECs) can cause them to either divide into uniform segments or shatter into unpredictable splinters, depending ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.