3-D bioprinting of living structures with built-in chemical sensors

October 2, 2018, University of Copenhagen
3D bioprinting of living structures with built-in chemical sensors
3D bioprinted structure containing green algae (Chlamydomonas) in a hydrogel. Credit: Anja Lode, TU Dresden

A new method enables non-invasive monitoring of oxygen metabolism in cells that are 3-D bioprinted into complex living structures. This could contribute to studies of cell growth and interactions under tissue-like conditions, as well as for the design of 3-D printed constructs facilitating higher productivity of microalgae in biofilms or better oxygen supply for stem cells used in bone and tissue reconstruction efforts.

An international team of researchers led by Professor Michael Kühl at the Department of Biology, University of Copenhagen, has just published a breakthrough in 3-D bioprinting. Together with German colleagues at the Technical University of Dresden, Professor Kühl's group implemented sensitive nanoparticles into a gel material that can be used for 3-D printing of complex, biofilm and tissue-like structures harboring living cells as well as built-in chemical sensors. The work has just been published in Advanced Functional Materials.

Kühl explains: "3-D printing is a widespread technique for producing objects in plastic, metal and other abiotic materials. Likewise, living cells can be 3-D printed in biocompatible gel materials (bioinks) and such 3-D bioprinting is a rapidly developing field, e.g. in biomedical studies, where stem cells are cultivated in 3-D printed constructs mimicking the complex of tissue and bones. Such attempts lack online monitoring of the metabolic activity of cells growing in bioprinted constructs; currently, such measurements largely rely on destructive sampling. We have developed a patent pending solution to this problem."

The group developed a functionalized bioink by implementing luminescent oxygen-sensitive nanoparticles into the print matrix. When blue light excites the nanoparticles, they emit red luminescent light in proportion to the local oxygen concentration—the more oxygen, the less red luminescence. The distribution of red luminescence and thus oxygen across bioprinted living structures can be imaged with a camera system. This allows for online, non-invasive monitoring of oxygen distribution and dynamics that can be mapped to the growth and distribution of cells in the 3-D bioprinted constructs without the need for destructive sampling.

Kühl says, "It is important that the addition of nanoparticles doesn't change the mechanical properties of the bioink, e.g. to avoid cell stress and death during the printing process. Furthermore, the nanoparticles should not inhibit or interfere with the cells. We have solved these challenges, as our method shows good biocompatibility and can be used with microalgae as well as sensitive human cell lines."

The recently published study demonstrates how bioinks functionalized with sensor nanoparticles can be calibrated and used, e.g., for monitoring algal photosynthesis and respiration, as well as stem cell respiration in bioprinted structures with one or several cell types.

"This is a breakthrough in 3-D bioprinting. It is now possible to monitor the and microenvironment of cells online, and non-invasively in intact 3-D printed living structures," says Prof. Kühl. "A key challenge in growing in larger tissue- or bone-like structures is to ensure a sufficient oxygen supply for the cells. With our development, it is now possible to visualize the oxygen conditions in 3-D bioprinted structures, which e.g. enables rapid testing and optimization of stem cell growth in differently designed constructs."

The team is interested in exploring new collaborations and applications of their developments. Kühl says, "3-D bioprinting with functionalized bioinks is a powerful new technology that can be applied in many other research fields than biomedicine. It is extremely inspiring to combine such advanced materials, science and sensor technology with my research in microbiology and biophotonics, where we currently employ 3-D bioprinting to study microbial interactions and photobiology."

Explore further: 3D-printed living tissues could spell the end of arthritis

More information: Erik Trampe et al, Functionalized Bioink with Optical Sensor Nanoparticles for O2 Imaging in 3D-Bioprinted Constructs, Advanced Functional Materials (2018). DOI: 10.1002/adfm.201804411

Related Stories

Human skin pigmentation recreated—with a 3-D bioprinter

January 23, 2018

A new method for controlling pigmentation in fabricated human skin has been developed by researchers from A*STAR's Singapore Institute of Manufacturing Technology (SIMTech) and the Singapore Centre for 3D Printing (SC3DP) ...

3-D printed biomaterials for bone tissue engineering

August 13, 2018

When skeletal defects are unable to heal on their own, bone tissue engineering (BTE), a developing field in orthopedics can combine materials science, tissue engineering and regenerative medicine to facilitate bone repair. ...

Success in the 3-D bioprinting of cartilage

April 28, 2017

A team of researchers at Sahlgrenska Academy has managed to generate cartilage tissue by printing stem cells using a 3-D-bioprinter. The fact that the stem cells survived being printed in this manner is a success in itself. ...

Recommended for you

Great white shark genome decoded

February 18, 2019

The great white shark is one of the most recognized marine creatures on Earth, generating widespread public fascination and media attention, including spawning one of the most successful movies in Hollywood history. This ...

Light-based production of drug-discovery molecules

February 18, 2019

Photoelectrochemical (PEC) cells are widely studied for the conversion of solar energy into chemical fuels. They use photocathodes and photoanodes to "split" water into hydrogen and oxygen respectively. PEC cells can work ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.