Scientists discover new type of self-healing material

February 7, 2019, RIKEN
Top panel: Optical microscope images of damaged (left) and repaired (right) samples of one of the materials in air at 25 °C. A film was cracked by razor blade and then left in air for 5 minutes for healing. Bottom panel: Optical microscope images of damaged (left) and repaired (right) samples of one of the films in water at 25 °C. The film was cracked by a razor blade and then left in water for 5 minutes for healing. Credit: RIKEN

A research group from RIKEN and Kyushu University has developed a new type of material, based on ethylene, which exhibits a number of useful properties such as self-healing and shape memory. Remarkably, some of the materials can spontaneously self-heal even in water or acidic and alkali solutions. The new material is based on ethylene, a compound that is the source of much of the plastic in use today.

Materials that can self-heal have become a popular area of research during the last decade, and a variety of materials have been developed. However, most of the materials reported to date have relied on sophisticated designs that incorporate chemical mechanisms into polymer networks, such as irreversible or reversible covalent-bond formation, hydrogen bonding, metal-ligand interactions, or ionic interactions. As a result, they require some , such as heat or pressure, to prompt them to heal, and in most cases, they do not function in water, acid or alkaline solutions because the chemical networks cannot survive such conditions. The ideal is to create a material that possesses sufficient toughness and can autonomously self-heal under various conditions.

For the present research, published in the Journal of the American Chemical Society, the researchers used a catalyst based on scandium, a rare metal, to create polymers composed of alternating sequences of ethylene and anisylpropylenes and shorter ethylene-ethylene segments by the of ethylene and anisylpropylenes. This new class of well-defined, functionalized polyolefins ranged from soft viscoelastic materials—materials that can be both elastic but also exhibit liquid-like properties—to tough elastomers, which can be stretched but return to their original shapes, and rigid plastics. The elastomer copolymers were very elastic, and tough, and also showed remarkable self-healing property, as they autonomously self-healed when subjected to mechanical damage not only in a dry environment but also in water and aqueous acid and alkaline solutions, without the need for any external energy or stimulus.

Credit: RIKEN

According to Zhaomin Hou of the RIKEN Center for Sustainable Resource Science and the RIKEN Cluster for Pioneering Research, who led the research team, "We had learned from our previous work that a scandium catalyst would be a useful way to create the copolymers of ethylene and anisylpropylenes, but we were astounded by the special properties that this class of exhibited. We look forward to working to find applications for these different films, which can be made easily from and other olefins."

a. A film was cut into a RIKEN logo and painted, (permanent shape at 20 ºC). b. The RIKEN-shaped sample was deformed at 50 °C and the deformed temporary shape was fixed by cooling to 20 ºC. c. The deformed temporary shape was placed in a 50 °C-water bath. d. The permanent (original) shape was recovered within 5 seconds in the water bath at 50 °C. Credit: RIKEN

Explore further: Scientists discover greener way of making plastics

More information: Haobing Wang et al. Synthesis of Self-Healing Polymers by Scandium-Catalyzed Copolymerization of Ethylene and Anisylpropylenes, Journal of the American Chemical Society (2019). DOI: 10.1021/jacs.8b13316

Related Stories

Scientists discover greener way of making plastics

April 11, 2018

Researchers at the Energy Safety Research Institute (ESRI) at Swansea University have found a way of converting waste carbon dioxide into a molecule that forms the basis of making plastics. The potential of using global ethylene ...

Recommended for you

Where is the universe hiding its missing mass?

February 15, 2019

Astronomers have spent decades looking for something that sounds like it would be hard to miss: about a third of the "normal" matter in the Universe. New results from NASA's Chandra X-ray Observatory may have helped them ...

What rising seas mean for local economies

February 15, 2019

Impacts from climate change are not always easy to see. But for many local businesses in coastal communities across the United States, the evidence is right outside their doors—or in their parking lots.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.