Laboratory's nanopore research hits a nerve

February 11, 2019 by Anne M Stark, Lawrence Livermore National Laboratory
A solid-state nanopore decorated with crown ether and DNA is selective to potassium ions over sodium ions. Credit: Ryan Chen/LLNL

Since the discovery of biological ion channels and their role in physiology, scientists have attempted to create man-made structures that mimic their biological counterparts.

New research by Lawrence Livermore National Laboratory (LLNL) scientists and collaborators at the University of California, Irvine shows that synthetic solid-state nanopores can have finely tuned transport behaviors much like the biological channels that allow a neuron to fire.

In biological ion channels, two of the most exciting properties are the ability to respond to and differentiate between two ions of the same charge, such as sodium and potassium.

It is well known that synthetic nanopores can distinguish between positive and (such as potassium and chloride) but in the new research, the team was able to distinguish between sodium and despite their equal charge and nearly identical size. The potassium-selective channels showed currents that were roughly 80 times larger for potassium ions than , significantly higher than any other man-made system has demonstrated and a first for solid-state nanopores.

"We can use our synthetic platforms to better understand how biological systems work," said Steven Buchsbaum, LLNL staff scientist and a lead author of a paper appearing in the Feb. 8 edition of Science Advances. "Performing studies on man-made systems built from the ground up can give unique insight into how these pores function and the underlying physical phenomena behind them."

UCI professor and collaborator Zuzanna Siwy said the most exciting application for the nanopores is their use as a building block toward making artificial biomimetic systems such as an artificial neuron.

Biology uses ion selectivity to enable in the form of a chemical potential across a cell membrane. This energy can then be tapped into later, powering processes such as nerve signaling. "The ability to do the same in man-made materials takes us one step closer to making synthetic biomimetic componentry," Siwy said.

The capability to distinguish between ions that closely resemble each other also can be applied to areas such as desalination/filtration and biosensing.

"Working with synthetic nanopores offers the benefits of increased control over the pore design and using materials that are much more robust than those seen in biology," said Francesco Fornasiero, LLNL staff scientist and coauthor. "This could enable us to eventually replace or repair with artificial versions that are superior to their biological counterparts."

Explore further: Carbon nanotubes mime biology

More information: Elif Turker Acar et al. Biomimetic potassium-selective nanopores, Science Advances (2019). DOI: 10.1126/sciadv.aav2568

Related Stories

Carbon nanotubes mime biology

December 18, 2018

Cellular membranes serve as an ideal example of a system that is multifunctional, tunable, precise and efficient.

Building better batteries by borrowing from biology

November 26, 2018

A research team at Osaka University has reported a new advance in the design of materials for use in rechargeable batteries, under high humidity conditions. Using inspiration from living cells that can block smaller particles ...

Study reveals how nanochannels select potassium ions

August 25, 2015

(Phys.org)—One of the mysteries in biology is how cells can selectively diffuse potassium across a membrane. Biological systems rely on a delicate balance between these potassium and sodium ion concentrations in the surrounding ...

Recommended for you

Researchers make coldest quantum gas of molecules

February 21, 2019

JILA researchers have made a long-lived, record-cold gas of molecules that follow the wave patterns of quantum mechanics instead of the strictly particle nature of ordinary classical physics. The creation of this gas boosts ...

Sculpting stable structures in pure liquids

February 21, 2019

Oscillating flow and light pulses can be used to create reconfigurable architecture in liquid crystals. Materials scientists can carefully engineer concerted microfluidic flows and localized optothermal fields to achieve ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.