Structural and dynamic differences between selective and non-selective ion channels

February 19, 2018, Forschungsverbund Berlin e.V. (FVB)
Snapshot taken during the computer simulation of the NaK channel - This channel (shown in yellow and orange) enables the flow of ions (e.g. potassium ions [red spheres]) across the cell membrane. (The membrane lipids are depicted in gray.) Credit: Barth van Rossum / FMP

Most ion channels are very selective about the ions that may or may not pass through them. They may be conductive for potassium ions and non-conductive for sodium ions, or vice versa. However, a number of ion channels allow for the efficient passage of both kinds of ions. How do these channel proteins accomplish this? A team of scientists around Dr. Han Sun and the research group of Professor Adam Lange at the Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) found the answer to this question.

Their study revealed structural and dynamic differences between selective and non-selective ion channels. The scientists described their findings and conclusions in the journal Nature Communications. In non-selective channels, the selectivity filter exhibits sizeable dynamics not present in selective channels. The selectivity filter of non-selective ion channels can exist in two different forms. Dependent on the state of the selectivity filter, one or the other ion type may pass.

Ion channels play prominent roles in organisms. For example, ion channels are in action when the organism registers stimuli and passes the information on to the brain in the form of electric signals. During this signal transmission, charged atoms (ions) must enter and leave the involved cells. Ions cannot permeate lipophilic cell membranes. Instead, they pass through protein channels in the cell membranes.

In many cases, the ion channels allow the passage of only one specific ion type, i.e. they may be conductive for potassium but not for or vice versa. The selectivity filter that is the narrowest part of the is responsible for this ion discrimination. However, the NaK channel allows for the passage of both sodium and potassium ions. It was in the focus of the present study by FMP scientists around Dr. Han Sun and Professor Adam Lange together with colleagues in Göttingen (Germany) and Hefei (China).

Non-selective ion channels are very important in medicine.

Until now, it has remained controversial why NaK channels allow for the passage of both sodium and potassium ions. Professor Adam Lange explains: "While X-ray crystallographic images showed us the three-dimensional structure of the channel, it was difficult to explain why this channel is conductive to two different ion types with similarly high efficiency. This was particularly hard to understand because the sequence and the 3-D structure of the selectivity filter are similar to the ones in potassium selective channels."

Scientist Dr. Han Sun added that this is a model system for several other non-selective in the human body. In this context, the cyclic nucleotide-gated and hyperpolarization-activated cyclic nucleotide–gated channels (CNG and HCN channels) are medically and physiologically relevant. "We know that CNG channels are important for vision and smell. Dysfunctional HCN channels are implicated in various neurological diseases such as epilepsy or autism."

Specific Ions Prefer Specific Channel Structures

The scientists used a combination of nuclear magnetic resonance (NMR) spectroscopy and computer-assisted molecular dynamics simulations. The results revealed that the selectivity filter of the NaK channel dynamically changes between two structures. Each structure is conductive for one of the two ion types. Dr. Han Sun says, "Surprisingly, the computer simulations showed that potassium ions passing through the NaK channel prefer the structure of a potassium selective channel, while the mechanism of the sodium ion passage is similar to the passage of sodium ions through a sodium selective ion channel." Until now, researchers believed that the structure of the selectivity filter is the same for sodium and ion transport through the NaK channel.

To gather further evidence for the crucial role of the dynamic structure of the NaK selectivity filter, the scientists experimented with a mutated NaK channel (NaK2K double point mutation). This mutated NaK channel is conductive only for . Professor Adam Lange gives an account of the results: "Our NMR investigations clearly revealed that the filter of this channel forms only a single ."

Explore further: New insights into sodium channel structure

More information: Chaowei Shi et al. A single NaK channel conformation is not enough for non-selective ion conduction, Nature Communications (2018). DOI: 10.1038/s41467-018-03179-y

Related Stories

New insights into sodium channel structure

April 4, 2017

Northwestern Medicine scientists have mapped the complete structure of a voltage-gated sodium channel, proteins in the membrane of cells that play an important role in many diseases. The findings were published in Nature ...

Studying dynamics of ion channels

May 18, 2015

Scientists from the Vaziri lab at the Vienna Biocenter, together with colleagues at the Institute for Biophysical Dynamics at the University of Chicago, have developed a method using infrared spectroscopy and atomistic modeling ...

Synthetic nanochannels for iodide transport

June 8, 2017

Exchange of iodide (iodine ions) between bloodstream and cells is crucial for the health of several organs and its malfunctioning is linked to goiter, hypo- and hyperthyroidism, breast cancer, and gastric cancer. Researchers ...

New operating principle of potassium channels discovered

January 28, 2014

Neurons transmit information with the help of special channels that allow the passage of potassium ions. Defective potassium channels play a role in epilepsy and depression. The scientists working with Prof. Henning Stahlberg ...

Recommended for you

In colliding galaxies, a pipsqueak shines bright

February 20, 2019

In the nearby Whirlpool galaxy and its companion galaxy, M51b, two supermassive black holes heat up and devour surrounding material. These two monsters should be the most luminous X-ray sources in sight, but a new study using ...

Research reveals why the zebra got its stripes

February 20, 2019

Why do zebras have stripes? A study published in PLOS ONE today takes us another step closer to answering this puzzling question and to understanding how stripes actually work.

When does one of the central ideas in economics work?

February 20, 2019

The concept of equilibrium is one of the most central ideas in economics. It is one of the core assumptions in the vast majority of economic models, including models used by policymakers on issues ranging from monetary policy ...

Correlated nucleons may solve 35-year-old mystery

February 20, 2019

A careful re-analysis of data taken at the Department of Energy's Thomas Jefferson National Accelerator Facility has revealed a possible link between correlated protons and neutrons in the nucleus and a 35-year-old mystery. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.