Building better batteries by borrowing from biology

November 26, 2018, Osaka University
Building better batteries by borrowing from biology
Figure 1: Structure of the newly developed ionic crystal. The pathway in which the ions can travel is highlighted in yellow. Credit: Osaka University

A research team at Osaka University has reported a new advance in the design of materials for use in rechargeable batteries, under high humidity conditions. Using inspiration from living cells that can block smaller particles but let larger particles pass through, the researchers were able to create a material with highly mobile potassium ions that can easily migrate in response to electric fields. This work may help make rechargeable batteries safe and inexpensive enough to drastically reduce the cost of electric cars and portable consumer electronics.

Rechargeable lithium-ion batteries are widely used in laptops, cell phones, and even electric and hybrid cars. Unfortunately, these batteries are expensive, and have even been known to burst into flames on occasion. New materials that do not use lithium could reduce the cost and improve the safety of these batteries, and have the potential to greatly accelerate the adoption of energy-efficient electric cars. Both sodium and are potential candidates that can be used to replace lithium, as they are cheap and in high supply. However, sodium and ions are much larger ions than lithium, so they move sluggishly through most materials. These are further slowed by the strong attractive forces to the negative charges in crystalline materials. "Potassium ions possess low mobility in the due to their large size, which is a disadvantage for constructing batteries," explains corresponding author Takumi Konno.

To solve this problem, the researchers used the same mechanism your cells employ to allow the large potassium ions to pass through their membranes while simultaneously keeping out smaller particles. Living systems achieve this seemingly impossible feat by considering not just the ion themselves, but also the surrounding water molecules, called the "hydration layer," that are attracted to the ion's positive charge. In fact, the smaller the ion, the larger and more tightly bound its associated hydration layer will be. Specialized in cell membranes are just the right size to allow hydrated potassium ions to pass through, but block the large hydration layers of smaller ions.

Figure 2: Conductivities of lithium (Li+, red), sodium (Na+, green), and potassium (K+, blue) ions inside the crystal at different temperatures. The conductivities increase even as the sizes of the ions increase. Credit: Osaka University

The researchers developed an ionic crystal using rhodium, zinc, and oxygen atoms. Just as with the selective biological channels, the mobility of the ions in the crystal was found to be higher for the bigger potassium ions, compared with the smaller lithium ions. In fact, the potassium ions moved so easily, the crystal was classified as a "superionic conductor." The researchers found that the current material had the largest hydrated potassium ion mobility ever seen to date.

"Remarkably, the crystal exhibited a particularly high ion conductivity due to the fast migration of hydrated potassium ions in the crystal lattice" lead author Nobuto Yoshinari says. "Such superionic conductivity of hydrated potassium ions in the solid state is unprecedented, and may lead to both safer and cheaper ."

Explore further: Sodium- and potassium-based batteries could be key for smart grid of the future

More information: Nobuto Yoshinari et al. Mobility of hydrated alkali metal ions in metallosupramolecular ionic crystals, Chemical Science (2018). DOI: 10.1039/c8sc04204g

Related Stories

Copper ions flow like liquid through crystalline structures

October 8, 2018

Materials scientists have sussed out the physical phenomenon underlying the promising electrical properties of a class of materials called superionic crystals. A better understanding of such materials could lead to safer ...

Building a safer lithium-ion battery

July 12, 2017

Lithium-ion batteries have become an indispensable power source for our proliferating gadgets. They have also, on occasion, been known to catch fire. To yield insight into what goes wrong when batteries fail and how to address ...

Recommended for you

Two new planets discovered using artificial intelligence

March 26, 2019

Astronomers at The University of Texas at Austin, in partnership with Google, have used artificial intelligence (AI) to uncover two more hidden planets in the Kepler space telescope archive. The technique shows promise for ...

Infertility's roots in DNA packaging

March 26, 2019

Pathological infertility is a condition affecting roughly 7 percent of human males, and among those afflicted, 10 to 15 percent are thought to have a genetic cause. However, pinpointing the precise genes responsible for the ...

Facebook is free, but should it count toward GDP anyway?

March 26, 2019

For several decades, gross domestic product (GDP), a sum of the value of purchased goods, has been a ubiquitous yardstick of economic activity. More recently, some observers have suggested that GDP falls short because it ...

Droughts could hit aging power plants hard

March 26, 2019

Older power plants with once-through cooling systems generate about a third of all U.S. electricity, but their future generating capacity will be undercut by droughts and rising water temperatures linked to climate change. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.