Reflections from a Nobel winner: Scientists need time to make discoveries

January 14, 2019 by Donna Strickland, The Conversation

Since the announcement that I won the Nobel Prize in physics for chirped pulse amplification, or CPA, there has been a lot of attention on its practical applications.

It is understandable that people want to know how it affects them. But as a scientist, I would hope society would be equally interested in fundamental . After all, you can't have the applications without the curiosity-driven research behind it. Learning more about science —science for science's sake—is worth supporting.

Gérard Mourou, my co-recipient of the Nobel Prize, and I developed CPA in the mid-1980s. It all started when he wondered if we could increase intensity by orders of magnitude —or by factors of a thousand. He was my doctoral supervisor at the University of Rochester back then. Mourou suggested stretching an ultrashort pulse of light of low energy, amplifying it and then compressing it. As the graduate student, I had to handle the details.

A goal to revolutionize laser physics

The goal was to revolutionize the field of high-intensity laser physics, a fundamental area of science. We wanted the laser to show us how high-intensity light changes matter, and how matter affects light in this interaction.

It took me a year to build the laser. We proved that we could increase by orders of magnitude. In fact, CPA led to the most intense laser pulses ever recorded. Our findings changed the world's understanding of how atoms interact with high-intensity light.

It was about a decade before practical uses common today eventually came into view.

Prof. Donna Strickland delivers the Nobel Lecture in Physics 2018.
Many practical applications

Because the high-intensity pulses are short, the laser only damages the area where it's applied. The result is precise, clean cuts that are ideal for transparent materials. A surgeon can use CPA to slice a patient's cornea during laser eye surgery. It cleanly cuts the glass parts in our cell phones.

Scientists are taking what we know about high-intensity lasers and are working on a way to use the most intense CPA lasers to accelerate protons.

Hopefully, one day these accelerated particles will help surgeons remove brain tumors that they can't today. In the future, CPA lasers might remove space junk by pushing it out of our orbit and to the Earth's atmosphere, where it will burn up and not collide with active satellites.

In many cases, the practical applications lag several years or even decades behind the original findings.

Albert Einstein created the equations for the laser in 1917, but wasn't until 1960 that Theodore Maiman first demonstrated the laser. Isidor Rabi first measured in 1938. He received the Nobel Prize for Physics in 1944 for his research, which led to the invention of magnetic resonance imaging, or MRI. The first MRI exam on a human patient took place in 1977.

Certainly, applications deserve a lot of attention. Before you can get to them though, researchers first have to understand the basic questions behind them.

The term may give some the false impression that it doesn't really affect their lives because it seems far removed from anything relatable to them. What's more, the term basic has the non-scientific definition of simple that undermines its importance in the context of basic science.

We must give scientists the opportunity through funding and time to pursue curiosity-based, long-term, basic-science research. Work that does not have direct ramifications for industry or our economy is also worthy. There's no telling what can come from supporting a curious mind trying to discover something new.

Explore further: Nobel-winning laser discoveries that lit up the field

Related Stories

Laser pioneers win Nobel Physics Prize

October 2, 2018

Three scientists on Tuesday won the Nobel Physics Prize, including the first woman to receive the prestigious award in 55 years, for inventing optical lasers that have paved the way for advanced precision instruments used ...

Nobel-winning physics key to ultra-fast laser research

October 4, 2018

The technique for generating high-intensity, ultra-short optical pulses developed by the 2018 Nobel Prize for Physics winners, Professor Gérard Mourou and Dr. Donna Strickland, provides the basis for important scientific ...

Brief reflections from a plasma mirror

December 5, 2018

When a dense sheet of electrons is accelerated to almost the speed of light, it acts as a reflective surface. Such a 'plasma mirror' can be used to manipulate light. Now an international team of physicists from the Max Planck ...

Terahertz laser pulses amplify optical phonons in solids

November 15, 2018

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg/Germany presents evidence of the amplification of optical phonons ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

EPA adviser is promoting harmful ideas, scientists say

March 22, 2019

The Trump administration's reliance on industry-funded environmental specialists is again coming under fire, this time by researchers who say that Louis Anthony "Tony" Cox Jr., who leads a key Environmental Protection Agency ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.