Brief reflections from a plasma mirror

December 5, 2018, Max Planck Institute of Quantum Optics

When a dense sheet of electrons is accelerated to almost the speed of light, it acts as a reflective surface. Such a 'plasma mirror' can be used to manipulate light. Now an international team of physicists from the Max Planck Institute of Quantum Optics, LMU Munich, and Umeå University in Sweden have characterized this plasma-mirror effect in detail, and exploited it to generate isolated, high-intensity attosecond light flashes. An attosecond lasts for a billionth of a billionth (10-18) of a second.

The interaction between extremely powerful and matter has opened up entirely new approaches to the generation of ultrashort light flashes lasting for only a few hundred attoseconds. These extraordinarily brief pulses can in turn be used to probe the dynamics of ultrafast physical phenomena at sub-atomic scales. The standard method used to create attosecond pulses is based on the interaction of near-infrared with the electrons in atoms of noble gases such as neon or argon.

Now researchers at the Laboratory for Attosecond Physics at the Max Planck Institute of Quantum Optics in Garching and Munich's Ludwig Maximilians University (LMU), in collaboration with colleagues at Umeå University, have successfully implemented a new strategy for the generation of isolated attosecond light pulses.

In the first step, extremely powerful femtosecond (10-15 sec) pulses are allowed to interact with glass. The laser light vaporizes the glass surface, ionizing its constituent atoms and accelerating the liberated electrons to velocities equivalent to an appreciable fraction of the . The resulting high-density plasma made up of rapidly moving electrons, which propagates in the same direction as the pulsed laser light, acts like a mirror. Once the electrons have attained velocities that approach the speed of light they become relativistic, and begin to oscillate in response to the laser field. The ensuing periodic deformation of the plasma mirror interacts with the reflected light wave to give rise to isolated attosecond pulses. These pulses have an estimated duration of approximately 200 as and wavelengths in the extreme ultraviolet region of the spectrum (20-30 nanometers, 40-60 eV).

In contrast to attosecond pulses generated with longer laser pulses, those produced by the plasma-mirror effect and laser pulses that have a duration of few optical cycles can be precisely controlled with the waveform. This also allowed the researchers to observe the time course of the generation process, i.e. the oscillation of the plasma mirror. Importantly, these pulses are much more intense, i.e. contain far more photons, than those obtainable with the standard procedure.

The increased intensity makes it possible to carry out still more precise measurements of the behaviour of subatomic particles in real time. Attosecond light pulses are primarily used to map electron motions, and thus provide insights into the dynamics of fundamental processes within atoms. The higher the intensity of the attosecond light flashes, the more information can be gleaned about the motions of particles within matter. With the practical demonstration of the plasma-mirror effect to generate bright pulses, the authors of the new study have developed a technology, which will enable physicists to probe even deeper into the mysteries of the quantum world.

Explore further: Flashes of light out of the mirror

More information: Dmitrii Kormin et al. Spectral interferometry with waveform-dependent relativistic high-order harmonics from plasma surfaces, Nature Communications (2018). DOI: 10.1038/s41467-018-07421-5

Related Stories

Flashes of light out of the mirror

June 12, 2012

(Phys.org) -- A team of the Laboratory of Attosecond physics at the Max Planck Institute of Quantum Optics developed an alternative way of generating attosecond flashes of light. 

Attoseconds break into atomic interior

February 27, 2018

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons ...

Processes in the atomic microcosmos revealed

May 16, 2018

Physicists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have successfully generated controlled electron pulses in the attosecond range. They used optical traveling waves formed by laser pulses of varying wavelengths. ...

A space-time sensor for light-matter interactions

November 30, 2017

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion ...

Recommended for you

Tangled magnetic fields power cosmic particle accelerators

December 13, 2018

Magnetic field lines tangled like spaghetti in a bowl might be behind the most powerful particle accelerators in the universe. That's the result of a new computational study by researchers from the Department of Energy's ...

Stretched quantum magnetism uncovered by quantum simulation

December 13, 2018

By studying ultracold atoms trapped in artificial crystals of light, Guillaume Salomon, a postdoc at the Max-Planck-Institute of Quantum Optics and a team of scientists have been able to directly observe a fundamental effect ...

The secret life of cloud droplets

December 13, 2018

Do water droplets cluster inside clouds? Researchers confirm two decades of theory with an airborne imaging instrument.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.