Attosecond pulse leads to highest molecular level probe resolution

October 1, 2018, Springer

Attosecond pulses enable physicists to probe dynamic processes in matter with unprecedented time resolution. This means such technology can provide better insights into the dynamics of electrons in molecules. Devising a source of ultra-fast X-ray pulsating in the attosecond range is no mean feat.

Comparing an attosecond is to a second is the equivalent of comparing a second to about 31.71 billion years. Now, a team of physicists from China has exploited an optical phenomenon, opening the door to creating high-order oscillations in existing light . This makes it possible to shift the frequency of the original source into X-rays with a laser beam source pulsating in an ultra-fast manner, to reach the attosecond range. The trouble is that yield of such higher order oscillations decreases as the source laser wavelength increases. In a new study published in EPJ D, Liqiang Feng and Yi Li from Liaoning University of Technology, Jinzhou, China, have developed a method to select, enhance and extend the higher order emission peak from a laser beam changing from ultraviolet to a mid-infrared.

Ensuring that the oscillation created is of suitable intensity and duration in the scale is tricky. In this study, the authors examine various ways of enhancing the efficiency of producing such higher order oscillations by coaxing the oscillations into a single peak instead of multiple peaks.

To achieve this objective, they eliminate the sensitivity of the detector to the duration and the delay time between pulses by opting for a technology based on a polarisation gate, which involves comparing the arrival time difference of the two polarised pulses from two mid-infrared polarisation fields once they have crossed the polarisation gate.

The authors then show that by adding an additional pulse, the higher order can be extended to the X-ray region.

Explore further: Processes in the atomic microcosmos revealed

More information: Liqiang Feng et al, High-intensity isolated attosecond X-ray pulse generation by using low-intensity ultraviolet–mid-infrared laser beam, The European Physical Journal D (2018). DOI: 10.1140/epjd/e2018-90268-6

Related Stories

Processes in the atomic microcosmos revealed

May 16, 2018

Physicists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have successfully generated controlled electron pulses in the attosecond range. They used optical traveling waves formed by laser pulses of varying wavelengths. ...

Attoseconds break into atomic interior

February 27, 2018

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons ...

A sense for infrared light

January 19, 2016

Laser physicists from the Max Planck Institute of Quantum Optics developed a measuring system for light waves in the near-infrared range.

Hard X-ray flash breaks speed record

April 10, 2018

Reactions in solar panels, catalytic converters, and other devices are governed by the quick motion of electrons. To capture the movement of these electrons, scientists use pulses of extremely high energy x-rays. The challenge ...

Recommended for you

Physicist describes the shape of a wormhole

October 17, 2018

A RUDN physicist demonstrated how to describe the shape of any symmetrical wormhole—a black hole that theoretically can be a kind of a portal between any two points in space and time—based on its wave spectrum. The research ...

Physics: Not everything is where it seems to be

October 16, 2018

Scientists at TU Wien, the University of Innsbruck and the ÖAW have for the first time demonstrated a wave effect that can lead to measurement errors in the optical position estimation of objects. The work now published ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.