Related topics: light · laser · electrons · molecules · atoms

Scientists use diamonds to generate better accelerator beams

Beam-driven wakefield acceleration approaches are promising candidates for future large-scale machines, including X-ray free electron lasers and linear colliders, as they have the potential to improve efficiency and reduce ...

Optical computing at sub-picosecond speeds

Vanderbilt researchers have developed the next generation of ultrafast data transmission that may make it possible to make already high-performance computing "on demand." The technology unjams bottlenecks in data streams ...

Temporal control of light echoes

Scientists at Paderborn University, the Technical University of Dortmund and the University of Würzburg have for the first time used laser pulses to precisely control photon echoes, which can occur when light waves superimpose ...

Trapping nanoparticles with optical tweezers

By exploiting a particular property of light diffraction at the interface between a glass and a liquid, researchers have demonstrated the first optical tweezers capable of trapping nanoscale particles.

New tools 'turn on' quantum gases of ultracold molecules

JILA researchers have developed tools to "turn on" quantum gases of ultracold molecules, gaining control of long-distance molecular interactions for potential applications such as encoding data for quantum computing and simulations.

page 1 from 40

Laser

A laser is a device that emits light (electromagnetic radiation) through a process called stimulated emission. The term laser is an acronym for light amplification by stimulated emission of radiation. Laser light is usually spatially coherent, which means that the light either is emitted in a narrow, low-divergence beam, or can be converted into one with the help of optical components such as lenses. Typically, lasers are thought of as emitting light with a narrow wavelength spectrum ("monochromatic" light). This is not true of all lasers, however: some emit light with a broad spectrum, while others emit light at multiple distinct wavelengths simultaneously. The coherence of typical laser emission is distinctive. Most other light sources emit incoherent light, which has a phase that varies randomly with time and position.

This text uses material from Wikipedia, licensed under CC BY-SA