Breakthrough study uncovers origin of plant sperm

January 7, 2019, University of Leicester
Credit: CC0 Public Domain

A large international team of researchers has uncovered the origin of an ancient genetic mechanism needed for plant fertility.

The study was led by Professor Takashi Araki of Kyoto University and Professor Frederic Berger of the Gregor Mendel Institute of Molecular Plant Biology in Vienna and involved an international team of 25 researchers. Professor David Twell, from the University of Leicester's Department of Genetics and Genome Biology, headed Leicester's contribution to the project.

The researchers discovered how a gene known to control inside pollen grains of flowering , is also used by primitive land plants to produce free-swimming sperm. The findings are presented in Nature Communications, published this month.

A key finding was that the DUO1 gene originated in the stoneworts, an ancient group of aquatic algae that diverged from land plants over 700 million years ago.

The work suggests that it was a simple change in the DUO1 gene sequence that allowed the algal ancestors of land plants to produce small swimming sperm to increase the chances of fertilisation in an aquatic environment.

The DNA sequences of DUO1 were compared in primitive such as liverworts and mosses, with those in freshwater algae. This uncovered quite small genetic changes that allowed the ancestral algal DUO1 protein to recognise a new DNA sequence. This change enabled DUO1 to control a gene network needed to make swimming sperm. The researchers went on to show that liverworts with a mutated DUO1 gene were infertile because they were unable to make active sperm.

Interestingly, the role of DUO1 in plant sperm formation has adapted to the demands of life on land. For example, DUO1 is needed to produce the whiplash flagella used for propulsion of liverwort sperm, but this is not the case in the flowering plant Arabidopsis thaliana (thale cress). Instead, the sperm of flowering plants do not swim and are transported to the egg by a tube that grows out from each pollen grain. In these sperm, DUO1 has taken control of the specialised network of needed for the union of sperm and egg.

Professor David Twell said: "It is heartening that a major event in the evolutionary history of plant sperm has been tracked down through international cooperation and the individual efforts of many researchers. Further team effort to assemble the fertility gene networks of our important crop plants, will uncover new ways to help plant breeders in their quest to maintain in the face of environmental change."

The original research paper, "MYB transcription factor neo-functionalization is associated with evolution of differentiation in plants," is available online from Nature Communications.

Explore further: Plant biologists discover gene that switches on 'essence of male'

More information: Asuka Higo et al. Transcription factor DUO1 generated by neo-functionalization is associated with evolution of sperm differentiation in plants, Nature Communications (2018). DOI: 10.1038/s41467-018-07728-3

Related Stories

The origin of flower-making genes

January 11, 2018

Flowering plants have evolved from plants without flowers. It is known that the function of several genes, called MADS-box genes, creates shapes peculiar to flowers such as stamens, pistils and petals. Plants that do not ...

Biologists discover gene behind 'plant sex mystery'

October 22, 2008

An enigma – unique to flowering plants – has been solved by researchers from the University of Leicester (UK) and POSTECH, South Korea. The discovery is reported in the journal Nature on 23 October 2008.

Ancestors of land plants revealed

April 18, 2011

It was previously thought that land plants evolved from stonewort-like algae. However, new research published in BioMed Central's open access journal BMC Evolutionary Biology shows that the closest relatives to land plants ...

Recommended for you

How our cellular antennas are formed

January 17, 2019

Most of our cells contain an immobile primary cilium, an antenna used to transfer information from the surrounding environment. Some cells also have many mobile cilia that are used to generate movement. The 'skeleton' of ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.