Scientists shuffle the deck to create materials with new quantum behaviors

November 7, 2018 by Laura Millsaps, Ames Laboratory
Scientists shuffle the deck to create materials with new quantum behaviors

Layered transition metal dichalcogenides or TMDCs—materials composed of metal nanolayers sandwiched between two other layers of chalcogens— have become extremely attractive to the research community due to their ability to exfoliate into 2-D single layers. Similar to graphene, they not only retain some of the unique properties of the bulk material, but also demonstrate direct-gap semiconducting behavior, excellent electrocatalytic activity and unique quantum phenomena such as charge density waves (CDW).

Generating complex multi-principle element TMDCs essential for the future development of new generations of quantum, electronic, and energy conversion is difficult.

"It is relatively simple to make a binary material from one type of and one type of chalcogen," said Ames Laboratory Senior Scientist Viktor Balema. "Once you try to add more metals or chalcogens to the reactants, combining them into a uniform structure becomes challenging. It was even believed that alloying of two or more different binary TMDCs in one single-phase material is absolutely impossible."

To overcome this obstacle, postdoctoral research associate Ihor Hlova used ball-milling and subsequent reactive fusion to combine such TMDCs as MoS2, WSe2, WS2, TaS2 and NbSe2. Ball-milling is a mechanochemical process capable of exfoliating layered materials into single- or few--nanosheets that can further restore their multi-layered arrangements by restacking.

"Mechanical processing treats binary TMDCs like shuffling together two separate decks of cards, said Balema. "They are reordered to form 3-D-heterostructured architectures – an unprecedented phenomenon first observed in our work."

Heating of the resulting 3-D-heterostructures brings them to the edge of their stability, reorders atoms within and between their layers, resulting in single-phase solids that can in turn be exfoliated, or peeled into 2-D single layers similar to graphene, but with their own, unique tunable properties.

"Preliminary examination of properties of only a few, earlier unavailable compounds, proves as exciting as synthetic results are," adds Ames Laboratory Senior Scientist and Distinguished Professor of Materials Science and Engineering Vitalij Pecharsky. "Very likely, we have just opened doors to the entirely new class of finely tunable, quantum matter."

Explore further: Transition metal dichalcogenides could increase computer speed, memory

More information: Ihor Z. Hlova et al. Multi-principal element transition metal dichalcogenides via reactive fusion of 3D-heterostructures, Chemical Communications (2018). DOI: 10.1039/C8CC06766J

Related Stories

Fluorine flows in, makes material metal

October 16, 2018

By getting in the way, fluorine atoms help a two-dimensional material transform from a semiconductor to a metal in a way that could be highly useful for electronics and other applications.

Scientists move graphene closer to transistor applications

August 29, 2017

Scientists at the U.S. Department of Energy's Ames Laboratory were able to successfully manipulate the electronic structure of graphene, which may enable the fabrication of graphene transistors— faster and more reliable ...

Scientists form flat tellurium

October 29, 2018

In the way things often happens in science, Amey Apte wasn't looking for two-dimensional tellurium while experimenting with materials at Rice University. But there it was.

Recommended for you

Solving mazes with single-molecule DNA navigators

November 16, 2018

The field of intelligent nanorobotics is based on the great promise of molecular devices with information processing capabilities. In a new study that supports the trend of DNA-based information carriers, scientists have ...

A way to make batteries almost any shape desired

November 16, 2018

A team of researchers from Korea Advanced Institute of Science and Technology, Harvard University and Korea Research Institute of Chemical Technology has developed a way to make batteries in almost any shape that can be imagined. ...

Graphene flickers at 400Hz in 2500ppi displays

November 16, 2018

With virtual reality (VR) sizzling in every electronic fair, there is a need for displays with higher resolution, frame rates and power efficiency. Now, a joint collaboration of researchers from SCALE Nanotech, Graphenea ...

'Smart skin' simplifies spotting strain in structures

November 15, 2018

Thanks to one peculiar characteristic of carbon nanotubes, engineers will soon be able to measure the accumulated strain in an airplane, a bridge or a pipeline – or just about anything – over the entire surface or down ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.