Study reveals how a small molecule promotes removal of excess cholesterol

November 27, 2018, eLife
A small molecule (shown here in pink) with the ability to increase 'good' (HDL) cholesterol in animal models binds to the membrane-binding domain of lecithin:cholesterol acyltransferase (LCAT; shown in teal). The site is remote from the active site of the enzyme but somehow enables the transfer of lipid substrates from HDL. Credit: Kelly Manthei and Stephanie King

Scientists have determined the structure of the activated form of an enzyme that helps to return excess cholesterol to the liver, a study in eLife reports.

The research reveals how a drug-like stimulates the action of the lecithin:cholesterol acyltransferase (LCAT) . It also suggests that future drugs using the same mechanism could be used to restore LCAT function in people with familial LCAT deficiency (FLD), a rare inherited disease that puts them at risk of eye problems, anaemia and kidney failure.

LCAT helps high-density lipoprotein (HDL) - known as the 'good' cholesterol—to remove cholesterol from the blood by converting the lipid into a form that is easier to package and transport. There are more than 90 known mutations in LCAT, which can cause either a partial loss of activity (known as 'fish-eye disease') or full loss (FLD). Boosting LCAT activity could therefore be beneficial in treating people with and LCAT deficiencies, but the mechanisms by which it can be activated are poorly understood.

"In this study, we used structural biology to understand how a patented LCAT activator binds to LCAT and how it promotes cholesterol transport," says lead author Kelly Manthei, a Postdoctoral Fellow at the University of Michigan Life Sciences Institute, US. "We also asked if the compound could help recover activity of LCAT enzymes that have commonly observed mutations seen in FLD."

The team used X-ray crystallography to look at the LCAT enzyme stabilized in its active state with two different chemicals—the activator molecule, and a second compound that mimics a substrate bound to the enzyme. The two chemicals had more of an effect on the protein when presented together than when presented separately, which suggested that they bind to the enzyme in different places.

Further analysis found that the activator molecule, unlike other known LCAT activators, binds to a region close to where HDL attaches. However, the activator did not help LCAT bind to the HDL more effectively, which led the team to speculate that it instead helps to transfer cholesterol and lipids into the catalytic center of the enzyme, so that it can convert it into cargo for transport in HDL.

Having established this mode of action, the researchers tested whether this molecule could help recover the cholesterol-transport function of a mutant LCAT enzyme. They made a version of the enzyme with a mutation commonly seen in FLD patients, and then tested its ability to bind to HDL and convert cholesterol in the presence or absence of the activator molecule. They were excited to find that the activator could partly reverse the loss of activity in the mutant enzymes, resulting in comparable conversion to the normal enzyme.

"Our results will help scientists design compounds that can better target LCAT so they might be of therapeutic benefit for heart disease and FLD patients," concludes senior author John Tesmer, Walther Professor in Cancer Structural Biology at Purdue University, US. "Future efforts will be to examine whether patients with other LCAT genetic mutations could benefit from the compounds used in this study, and to design molecules with improved pharmacological properties for further development."

Explore further: New views of enzyme structures offer insights into metabolism of cholesterol, other lipids

More information: Kelly A Manthei et al, Molecular basis for activation of lecithin:cholesterol acyltransferase by a compound that increases HDL cholesterol, eLife (2018). DOI: 10.7554/eLife.41604

Related Stories

Researchers identify structure of apolipoprotein

November 4, 2011

Using a sophisticated technique of x-ray crystallography, researchers Xiaohu Mei, PhD, and David Atkinson, PhD, from Boston University School of Medicine (BUSM) have for the first time obtained an "image" of the structure ...

Team determines how cholesterol moves inside cells

November 14, 2018

Researchers have found that high-density lipoprotein, or HDL, sometimes referred to as "good" cholesterol, is transported from the outer wall to the interior of cells by a protein that helps create a "bridge" between the ...

Researchers discover new gene for hair loss

November 7, 2018

Hypotrichosis simplex leads to progressive hair loss as early as childhood. A team of researchers led by human geneticists at the University Hospital of Bonn has now found a gene that is responsible for this rare form of ...

Scavengers "protect" HDL

July 2, 2018

High-density lipoprotein (HDL) is widely thought to protect against the development of atherosclerosis, yet drugs that raise levels of HDL cholesterol (HDL-C) have failed to reduce the risk of heart disease.

Recommended for you

What happened before the Big Bang?

March 26, 2019

A team of scientists has proposed a powerful new test for inflation, the theory that the universe dramatically expanded in size in a fleeting fraction of a second right after the Big Bang. Their goal is to give insight into ...

Cellular microRNA detection with miRacles

March 26, 2019

MicroRNAs (miRNAs) are short noncoding regulatory RNAs that can repress gene expression post-transcriptionally and are therefore increasingly used as biomarkers of disease. Detecting miRNAs can be arduous and expensive as ...

Can China keep it's climate promises?

March 26, 2019

China can easily meet its Paris climate pledge to peak its greenhouse gas emissions by 2030, but sourcing 20 percent of its energy needs from renewables and nuclear power by that date may be considerably harder, researchers ...

In the Tree of Life, youth has its advantages

March 26, 2019

It's a question that has captivated naturalists for centuries: Why have some groups of organisms enjoyed incredibly diversity—like fish, birds, insects—while others have contained only a few species—like humans.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.