Next step on the path towards an efficient biofuel cell

November 14, 2018, Ruhr-Universitaet-Bochum
The Bochum research team: Julian Szczesny, Nikola Marković, Felipe Conzuelo, Wolfgang Schuhmann and Adrian Ruff (from left). Credit: RUB, Marquard

Fuel cells that work with the enzyme hydrogenase are, in principle, just as efficient as those that contain the expensive precious metal platinum as a catalyst. However, the enzymes need an aqueous environment, which makes it difficult for the starting material for the reaction – hydrogen – to reach the enzyme-loaded electrode. Researchers solved this problem by combining previously developed concepts for packaging the enzymes with gas diffusion electrode technology. The system developed in this way achieved significantly higher current densities than previously achieved with hydrogenase fuel cells.

In the journal Nature Communications, a team from the Center for Electrochemical Sciences at Ruhr-Universität Bochum, together with colleagues from the Max Planck Institute for Chemical Energy Conversion in Mülheim an der Ruhr and the University of Lisbon, describes how they developed and tested the electrodes. The article was published on 9 November 2018.

Advantages and disadvantages of gas diffusion electrodes

Gas diffusion electrodes can efficiently transport gaseous raw materials for a chemical reaction to the surface with the catalyst. They have already been tested in various systems, but the catalyst was electrically wired directly to the electrode surface. "In this type of system, only a single layer of can be applied to the electrode, which limits the flow of current," says Bochum chemist Dr. Adrian Ruff, describing a disadvantage. In addition, the enzymes were not protected from harmful environmental influences. In the case of hydrogenase, however, this is necessary because it is unstable in the presence of oxygen.

Redox polymer as an oxygen protection shield

In recent years, the chemists from the Center for Electrochemical Sciences in Bochum have developed a redox in which they can embed hydrogenases and protect them from oxygen. Previously, however, they had only tested this on flat electrodes, not on porous three-dimensional structures such as those employed in gas diffusion electrodes.

The researchers carried out biofuel cell tests in this electrochemical cell. Credit: RUB, Marquard
"The porous structures offer a large surface area and thus enable a high enzyme load," says Professor Wolfgang Schuhmann, Head of the Center for Electrochemical Sciences. "But it was not clear whether the oxygen protection shield on these structures would work and whether the system would then still be gas-permeable."

Applying enzymes to electrodes

One of the problems with the manufacturing process is that the electrodes are hydrophobic, i.e. water-repellent, while the enzymes are hydrophilic, i.e. water-friendly. The two surfaces therefore tend to repel each other. For this reason, the researchers first applied an adhesive yet electron transferring layer to the electrode surface, onto which they then applied the polymer matrix with the enzyme in a second step. "We specifically synthesised a polymer matrix with an optimal balance of hydrophilic and hydrophobic properties," explains Adrian Ruff. "This was the only way to achieve stable films with good catalyst loading."

The electrodes constructed in this way were still permeable to gas. The tests also showed that the polymer matrix also functions as an oxygen shield for porous three-dimensional electrodes. The scientists used the system to achieve a current density of eight milliamperes per square centimetre. Earlier bioanodes with polymer and hydrogenase only reached one milliampere per square centimetre.

Functional biofuel cell

The team combined the bioanode described above with a biocathode and showed that a functional can be produced in this way. It achieved a power density of up to 3.6 milliwatts per square centimetre and an open circuit voltage of 1.13 volts, which is just below the theoretical maximum of 1.23 volts.

Explore further: A protective shield for sensitive enzymes in biofuel cells

More information: Julian Szczesny et al. A gas breathing hydrogen/air biofuel cell comprising a redox polymer/hydrogenase-based bioanode, Nature Communications (2018). DOI: 10.1038/s41467-018-07137-6

Related Stories

A protective shield for sensitive enzymes in biofuel cells

September 17, 2018

An international team of researchers has developed a new mechanism to protect enzymes from oxygen as biocatalysts in fuel cells. The enzymes, known as hydrogenases, are just as efficient as precious metal catalysts, but unstable ...

Fixation of powder catalysts on electrodes

June 30, 2017

Chemists at Ruhr-Universität Bochum have developed a new method to tightly fix catalyst powders on electrode surfaces. Currently, the high physical stress induced on catalyst films by gas evolving reactions hampers the application ...

New biofuel cell with energy storage

November 15, 2016

Researchers have developed a hybrid of a fuel cell and capacitor on a biocatalytic basis. With the aid of enzymatic processes, what's known as a biosupercapacitor efficiently generates and stores energy. The trick: the enzymes ...

Improved understanding of industrial electrode processes

August 23, 2018

In the industrial production of chlorine, special electrodes have been recently introduced, which consume much less current than conventional systems. The method requires oxygen to be introduced into a hot, highly concentrated ...

Self-healing catalyst films for hydrogen production

May 26, 2017

Chemists at the Centre for Electrochemical Sciences at Ruhr-Universität Bochum have developed a catalyst with self-healing properties. Under the challenging conditions of water electrolysis for hydrogen production, the catalyst ...

Efficiency of water electrolysis doubled

March 10, 2016

Researchers have boosted the efficiency of water electrolysis. They applied a layer of copper atoms in a conventional platinum electrode. Thus, reaction intermediates could desorb a bit more easily from the catalyst surface. ...

Recommended for you

Photochemical deracemization of chiral compounds achieved

December 19, 2018

Enantiomeric molecules resemble each other like right and left hands. Both variants normally arise in chemical reactions. But frequently, only one of the two forms is effective in biology and medicine. Completely converting ...

Carbon fuels go green for renewable energy

December 18, 2018

For decades, scientists have searched for effective ways to remove excess carbon dioxide emissions from the air, and recycle them into products such as renewable fuels. But the process of converting carbon dioxide into useful ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.