Efficiency of water electrolysis doubled

March 10, 2016, Ruhr-Universitaet-Bochum
Together with his team, Wolfgang Schuhmann develops new electrodes, for instance for producing hydrogen. Credit: RUB, Tim Kramer

Researchers have boosted the efficiency of water electrolysis. They applied a layer of copper atoms in a conventional platinum electrode. Thus, reaction intermediates could desorb a bit more easily from the catalyst surface. The modified system generated twice the amount of hydrogen than a platinum electrode without a copper layer. The team from the Ruhr-Universität Bochum, Technical University in Munich and Universiteit Leiden published these results in the journal Nature Communications.

Water electrolysis has not yet established itself as a method for the production of hydrogen. Too much energy is lost in the process. Researchers have now doubled the efficiency of the reaction.

In the journal Nature Communications, researchers from the Ruhr-Universität Bochum, Technical University of Munich and Universiteit Leiden report in what way the efficiency of electrodes can be increased for the purpose of water electrolysis. Typically, platinum is applied as catalyst, in order to accelerate the conversion of water to hydrogen and oxygen. For the reaction to be as efficient as possible, intermediates must not adhere too strongly or too weakly at the catalyst surface.

Traditional electrodes bind intermediates too strongly

The team headed by Prof Dr Aliaksandr Bandarenka from the Department of Physics of Energy Conversion and Storage in Munich and Prof Dr Wolfgang Schuhmann from the Center for Electrochemical Sciences in Bochum has calculated how strongly intermediates must adhere to the electrodes, in order to most efficiently facilitate the reaction. The analysis revealed that traditional electrodes from platinum, rhodium and palladium bind the intermediates a bit too strongly.

The researchers modified the properties of the platinum catalyst surface by applying a layer of . With this additional layer, the system generated twice the amount of hydrogen than with a pure platinum electrode. But only if the researchers applied the copper layer directly under the top layer of the platinum atoms. The group observed another useful side effect: the copper layer extended the service life of the electrodes, for example by rendering them more corrosion-resistant.

Water electrolysis has not yet been implemented on a large scale

Only four per cent of all hydrogen produced worldwide are the result of water electrolysis. As the used in the process are not efficient enough, large-scale application is not profitable. "To date, hydrogen has been mainly obtained from fossil fuels, with large CO2 volumes being released in the process," says Wolfgang Schuhmann. "If we succeeded in obtaining by using electrolysis instead, it would be a huge step towards climate-friendly energy conversion. For this purpose, we could utilise surplus electricity, for example generated by wind power."

"In addition, the research on this reaction allows us to test, how well we can design catalyst surfaces by precisely positioning different metal atoms," adds Aliaksandr Bandarenka. "A knowledge many other catalytic processes might benefit from."

Explore further: Researchers develop highly efficient hollow copper electrodes

More information: Jakub Tymoczko et al. Making the hydrogen evolution reaction in polymer electrolyte membrane electrolysers even faster, Nature Communications (2016). DOI: 10.1038/NCOMMS10990

Related Stories

Researchers develop highly efficient hollow copper electrodes

March 9, 2016

Scientists at the University of Twente research institute MESA+ have developed an electrode in the form of a hollow porous copper fibre which is able to convert carbon dioxide (CO2) into carbon monoxide (CO) extremely efficiently. ...

Chemists develop novel catalyst with two functions

July 9, 2014

Chemists at the Ruhr-Universität Bochum have made a decisive step towards more cost-efficient regenerative fuel cells and rechargeable metal-air batteries. They developed a new type of catalyst on the basis of carbon, which ...

Chemical engineers borrow technique to store solar energy

November 6, 2014

(Phys.org) —Chemical engineers at Stanford have designed a catalyst that could help produce vast quantities of pure hydrogen through electrolysis – the process of passing electricity through water to break hydrogen loose ...

Recommended for you

The powerful meteor that no one saw (except satellites)

March 19, 2019

At precisely 11:48 am on December 18, 2018, a large space rock heading straight for Earth at a speed of 19 miles per second exploded into a vast ball of fire as it entered the atmosphere, 15.9 miles above the Bering Sea.

Revealing the rules behind virus scaffold construction

March 19, 2019

A team of researchers including Northwestern Engineering faculty has expanded the understanding of how virus shells self-assemble, an important step toward developing techniques that use viruses as vehicles to deliver targeted ...

Nanoscale Lamb wave-driven motors in nonliquid environments

March 19, 2019

Light driven movement is challenging in nonliquid environments as micro-sized objects can experience strong dry adhesion to contact surfaces and resist movement. In a recent study, Jinsheng Lu and co-workers at the College ...

Levitating objects with light

March 19, 2019

Researchers at Caltech have designed a way to levitate and propel objects using only light, by creating specific nanoscale patterning on the objects' surfaces.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.