New method enables large-scale production of bio-based plastic bottles

November 12, 2018, Hokkaido University
Conventional methods produce by-products making large-scale FDCA production difficult, while this new method yields FDCA efficiently without by-products formation. Credit: Kim M., et al., Angewandte Chemie International Edition, May 14, 2018

Scientists have discovered a novel method to synthesize furan-2,5-dicarboxylic acid (FDCA) in a high yield from a glucose derivative of non-food plant cellulose, paving the way for replacing petroleum-derived terephthalic acid with biomaterials in plastic bottle applications.

The chemical industry is under pressure to establish energy-efficient chemical procedures that do not generate by-products, and using renewable resources wherever possible. Scientists believe that if resources from non-food plants can be used without putting a burden on the environment, it will help sustain existing social systems.

It has been reported that various useful polymers can be synthesized from 5-(hydroxymethyl)furfural (HMF), the biomaterial used in this study. A high yield of FDCA can be obtained when HMF is oxidized in a diluted solution under 2 weight percentage (wt percent) with various supported metal catalysts. However, a major stumbling block to industrial application lies with the use of a concentrated solution of 10-20 wt percent, which is essential for efficient and scalable production of FDCA in the chemical industry. When HMF was simply oxidized in a concentrated solution (10 wt percent), the FDCA yield was only around 30 percent, and a large amount of solid by-products was formed simultaneously. This is due to complex side reactions induced from HMF itself.

In the study published in Angewandte Chemie International Edition, a Japan-Netherlands research team led by Associate Professor Kiyotaka Nakajima at Hokkaido University and Professor Emiel J.M. Hensen at Eindhoven University of Technology succeeded in suppressing the side reactions and producing FDCA with high yields from concentrated HMF solutions (10~20 wt percent) without by-products formation. Specifically, they first acetalized HMF with 1,3-propanediol to protect by-product-inducing formyl groups and then oxidized HMF-acetal with a supported Au catalyst.

About 80 percent of 1,3-propanediol used to protect formyl groups can be reused for the subsequent reactions. In addition, drastic improvement in the substrate concentration reduces the amount of solvents used in the production process. Kiyotaka Nakajima says "It is significant that our method can reduce the total energy consumption required for complex work-up processes to isolate the reaction product."

"These results represent a significant advance over the current state of the art, overcoming an inherent limitation of the oxidation of HMF to an important monomer for biopolymer production. Controlling the reactivity of formyl group could open the door for the production of commodity chemicals from sugar-based biomaterials," says Kiyotaka Nakajima. This study was conducted jointly with Mitsubishi Chemical Corporation.

Scientists have discovered a novel method to synthesize furan-2,5-dicarboxylic acid (FDCA) in a high yield from a glucose derivative of non-food plant cellulose, paving the way for replacing petroleum-derived terephthalic acid with biomaterials in plastic bottle applications.

The chemical industry is under pressure to establish energy-efficient procedures that do not generate by-products, and using renewable resources wherever possible. Scientists believe that if resources from non-food plants can be used without putting a burden on the environment, it will help sustain existing social systems.

It has been reported that various useful polymers can be synthesized from 5-(hydroxymethyl)furfural (HMF), the biomaterial used in this study. A high yield of FDCA can be obtained when HMF is oxidized in a diluted solution under 2 weight percentage (wt percent) with various supported metal catalysts. However, a major stumbling block to industrial application lies with the use of a concentrated solution of 10-20 wt percent, which is essential for efficient and scalable production of FDCA in the . When HMF was simply oxidized in a concentrated solution (10 wt percent), the FDCA yield was only around 30 percent, and a large amount of solid by-products was formed simultaneously. This is due to complex side reactions induced from HMF itself.

In the study published in Angewandte Chemie International Edition, a Japan-Netherland research team led by Associate Professor Kiyotaka Nakajima at Hokkaido University and Professor Emiel J.M. Hensen at Eindhove University of Technology succeeded in suppressing the side reactions and producing FDCA with high yields from concentrated HMF solutions (10~20 wt percent) without by-products formation. Specifically, they first acetalized HMF with 1,3-propanediol to protect by-product-inducing formyl groups and then oxidized HMF-acetal with a supported Au catalyst.

About 80 percent of 1,3-propanediol used to protect formyl groups can be reused for the subsequent reactions. In addition, drastic improvement in the substrate concentration reduces the amount of solvents used in the production process. Kiyotaka Nakajima says "It is significant that our method can reduce the total energy consumption required for complex work-up processes to isolate the reaction product."

"These results represent a significant advance over the current state of the art, overcoming an inherent limitation of the oxidation of HMF to an important monomer for biopolymer production. Controlling the reactivity of formyl group could open the door for the production of commodity chemicals from sugar-based biomaterials," says Kiyotaka Nakajima. This study was conducted jointly with Mitsubishi Chemical Corporation.

Explore further: New catalyst with a dual function for hydrogen and plastic production

More information: Minjune Kim et al. Aerobic Oxidation of 5-(Hydroxymethyl)furfural Cyclic Acetal Enables Selective Furan-2,5-dicarboxylic Acid Formation with CeO2 -Supported Gold Catalyst, Angewandte Chemie International Edition (2018). DOI: 10.1002/anie.201805457

Related Stories

Bio-renewable process could help 'green' plastic

January 19, 2018

When John Wesley Hyatt patented the first industrial plastic in 1869, his intention was to create an alternative to the elephant tusk ivory used to make piano keys. But this early plastic also sparked a revolution in the ...

Synthesizing textiles from sugar

April 1, 2014

In the future, the clothes you wear could be made from sugar. Researchers at the Institute of Bioengineering and Nanotechnology (IBN) have discovered a new chemical process that can convert adipic acid directly from sugar.

Better biomass conversion for biofuels and bioproducts

March 14, 2018

Behind the successful conversion of biomass to a better biofuel or a new green chemical, there is a carefully chosen solvent. The right solvent not only dissolves biomass but also drives the efficiency of the entire conversion ...

Recommended for you

Carbon fuels go green for renewable energy

December 18, 2018

For decades, scientists have searched for effective ways to remove excess carbon dioxide emissions from the air, and recycle them into products such as renewable fuels. But the process of converting carbon dioxide into useful ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.