Hard limits on the postselectability of optical graph states

November 28, 2018, University of Bristol
Artists' conception of a six-qubit graph state, discussed in this work, and its counterpart after local complementation. This state is achievable using linear optics and postselection. Credit: J. Silverstone, University of Bristol

Since the discovery of quantum mechanics, in the early 20th century, physicists have relied on optics to test its fundamentals.

Even today, linear quantum optics—the physics of how behave in mirrors, waveplates, and beamsplitters—leads the way in terms of observations of multi-party entanglement, tests of quantum nonlocality, and addressing fundamental questions about the nature of reality itself.

Light notoriously avoids interaction. One does not readily affect anything about a second beam—they simply add up, through interference, and go about their business.

To date, quantum mechanical tests have relied on our ability to produce states of light in which, when all the photons are measured, a subset of the measurement patterns can be sifted out—those in which a desired interaction has occurred. Physicists call this technique 'postselection'.

New work by a team at the University of Bristol's Centre for Quantum Photonics has uncovered fundamental limits on the quantum operations which can be carried out with postselection. As physicists build bigger and bigger quantum states of light, fewer and fewer entangled states are reachable using postselection alone.

The Bristol team found that as the complexity of the postselection scheme increases, the desired interacting state, which at first is easy to sift from the larger state, starts to behave indistinguishably from the noise, making postselection impossible.

Each photon can carry a quantum bit, or 'qubit', of quantum information, for applications ranging from quantum computing to quantum communications. An important class of entangled states are the 'graph states', so called because their entanglement can be visualised as connections between the qubit nodes of a graph.

Applying their postselectability heuristics to graph states, the researchers catalogued which graphs of up to nine qubits are postselectable, finding these to be fewer than one fifth of the total. This fraction is expected to drop severely for larger quantum systems, limiting the kinds of entanglement that can be reached with today's quantum photonic technology, and strengthening the call for new technologies to generate and entangle photons.

The work is published today in the journal Quantum Science and Technology.

Jeremy Adcock, lead author of the new work, said: "Even though our rules for postselection show that most states are off limits, they also tell us how to build experiments of maximum complexity."

Dr. Joshua Silverstone, who led the project, and is a Leverhulme Early Career Fellow at Bristol, added: "People have known about problems with postselection for many years, but it's remarkable that only now can we see through to its fundamental limits."

"Postselection still has some fight left in it, but this work should really make people think about modern approaches to optical tech."

Explore further: One step closer to complex quantum teleportation

More information: 'Hard limits on the postselectability of optical graph states' by J. C. Adcock, S. Morley-Short, J. W. Silverstone, and M. G. Thompson in Quantum Science and Technology, Quantum Science and Technology, 2018.

Related Stories

One step closer to complex quantum teleportation

November 5, 2018

The experimental mastery of complex quantum systems is required for future technologies like quantum computers and quantum encryption. Scientists from the University of Vienna and the Austrian Academy of Sciences have broken ...

18-qubit entanglement sets new record

July 9, 2018

Physicists have experimentally demonstrated 18-qubit entanglement, which is the largest entangled state achieved so far with individual control of each qubit. As each qubit has two possible values, the 18 qubits can generate ...

A new kind of quantum computer

November 6, 2017

Quantum mechanics incorporates some very non-intuitive properties of matter. Quantum superposition, for example, allows an atom to be simultaneously in two different states with its spin axis pointed both up and down, or ...

Three 'twisted' photons in 3 dimensions

February 29, 2016

Researchers at the Institute of Quantum Optics and Quantum Information, the University of Vienna, and the Universitat Autonoma de Barcelona have achieved a new milestone in quantum physics: they were able to entangle three ...

Physicists set new record with 10-qubit entanglement

November 29, 2017

(Phys.org)—Physicists have experimentally demonstrated quantum entanglement with 10 qubits on a superconducting circuit, surpassing the previous record of nine entangled superconducting qubits. The 10-qubit state is the ...

Recommended for you

A quantum magnet with a topological twist

February 22, 2019

Taking their name from an intricate Japanese basket pattern, kagome magnets are thought to have electronic properties that could be valuable for future quantum devices and applications. Theories predict that some electrons ...

Sculpting stable structures in pure liquids

February 21, 2019

Oscillating flow and light pulses can be used to create reconfigurable architecture in liquid crystals. Materials scientists can carefully engineer concerted microfluidic flows and localized optothermal fields to achieve ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.