Fluorescent molecule could shed light on the inner workings of the cellular environment

October 4, 2018, Agency for Science, Technology and Research (A*STAR), Singapore
Snapshots of the rotating fluorescent molecule at gradually increasing microviscosity show how the probe becomes more and more extended and exposed. Credit: A*STAR Bioinformatics Institute

A fluorescent molecule whose luminosity depends upon how fast it can rotate is helping researchers measure how viscous the fluid is inside different parts of a cell.

"There's a lot of interest in the biophysical field in developing that can be used to characterize the environment inside a cell or any kind of biological compartment," says Peter Bond, from A*STAR's Bioinformatics Institute.

Researchers from the United Kingdom and Singapore—including A*STAR scientists such as Bond's team who led the computational arm of the project—have modeled, developed and tested a molecule comprising two parts; a genetic probe designed to home in on particular proteins, so it can be directed to wherever in a cell that is found; and a molecular rotor—a fluorescent molecule whose fluorescence lasts longer, the slower it spins. A*STAR researchers simulated how this molecule would perform in different microenvironments at scales of millionths or even billionths of a meter.

Microviscosity refers to how viscous, or thick, the fluid is in particular parts of a cell. Since cell contents are mobile in a liquid environment, microviscosity can have a major impact on how proteins and biological molecules interact and communicate with each other. "These proteins are affected by interactions with each other, and by local differences in osmolytes and other small , such as nutrients," Bond says.

To measure the microviscosity inside a cell, the researchers first needed to understand the dynamics of how this probe might behave in environments of different viscosities. Using computer simulations of liquids, they were able to show that as the viscosity of the solution increased, the rate of rotation of the probe decreased and its fluorescence changed in a measurable way.

Meanwhile their colleagues in the United Kingdom were conducting experiments in cells and found very similar results. Using the newly-developed microviscosity , the researchers were able to study how mitochondria, the powerhouses of the cell, react to environmental changes. They found that the interior of mitochondria maintained stable viscosity conditions even in the face of large changes in external electrolyte concentrations and viscosity.

Microviscosity is believed to play an important role in diseases such as Alzheimer's disease, with evidence suggesting microviscosity inside the brain may change as the disease progresses.

"If we could understand factors such as microviscosity, as well as understand basic biological mechanisms, we can develop new approaches to treating diseases," Bond says.

Explore further: Boosting the movement of fluorescent probes across the cell membrane

More information: Joseph E. Chambers et al. An Optical Technique for Mapping Microviscosity Dynamics in Cellular Organelles, ACS Nano (2018). DOI: 10.1021/acsnano.8b00177

Related Stories

Fluorescent molecules reveal how cancer cells are inhibited

June 26, 2018

A team of researchers at Lund University in Sweden has developed a fluorescent variant of a molecule that inhibits cancer stem cells. Capturing images of the molecule entering a cell has enabled the researchers, using cell-biological ...

MIT probe may help untangle cells' signaling pathways

June 27, 2008

MIT researchers have designed a new type of probe that can image thousands of interactions between proteins inside a living cell, giving them a tool to untangle the web of signaling pathways that control most of a cell's ...

Recommended for you

Graphene's magic is in the defects

December 18, 2018

A team of researchers at the New York University Tandon School of Engineering and NYU Center for Neural Science has solved a longstanding puzzle of how to build ultra-sensitive, ultra-small electrochemical sensors with homogenous ...

Deep learning democratizes nano-scale imaging

December 18, 2018

Many problems in physical and biological sciences as well as engineering rely on our ability to monitor objects or processes at nano-scale, and fluorescence microscopy has been used for decades as one of our most useful information ...

Carbon nanotubes mime biology

December 18, 2018

Cellular membranes serve as an ideal example of a system that is multifunctional, tunable, precise and efficient.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.