Vital for life, heat and power – what you never knew about salt water

September 14, 2018, The Conversation
Salt water is fun to swim in – but it also carries the electrical signals vital for life. Credit: Raphael Nogueira/Unsplash, CC BY

Your tongue is a salt detector – it dissolves the solid salt crystals sprinkled on your chips to create an intense flavour sensation.

But is way more important than just being a food additive.

Salt water is literally the most common substance on the surface of Earth, and it's really important – for life and for the planet.

Here are five things that will surprise you about plain old .

1. Salt water carries the electrical signals that make life possible

Salt water is made when a solid salt, such as table salt (sodium chloride), is added to water and breaks apart into individual freely moving particles called ions. There are many kinds of salt water, depending on which ions are present.

These ions act just like a balloon that's been rubbed against your hair. They carry an electrical charge, and allow salt water to conduct electricity.

Your body uses salt water to send the that cause your heart to beat and your brain to think. To do this, the body has special molecules called ion pumps that move these ions around. Many diseases are caused when these ion pumps malfunction.

It also matters which ions carry these signals. For example, replacing sodium with its closest elemental relatives on the periodic table gives either a treatment for bipolar disease in the case of lithium, or a lethal injection ingredient in the case of potassium.

The Gulf Stream is a huge flow of water north from the tropics.

2. Salt water acts as a conveyor belt to carry heat around the planet

As made famous by the movie The Day After Tomorrow, Europe and North America are kept warm by the Gulf Stream, a massive current of warm water flowing north from the tropics.

This current is driven by changes in the saltiness of . As the polar ice caps freeze in winter, the surrounding ocean water becomes saltier. Saltier water is heavier and so it sinks to the sea floor, stirring the ocean and driving these currents.

As melts the ice caps, these currents may be disrupted. This will upset the flow of heat and nutrients around the world in complex ways.

3. Salt water can be used to suck carbon dioxide out of the air

To prevent the worst effects of climate change we need to extract carbon dioxide (CO₂) from the air and store it on a huge scale. The ocean currently already does this, removing more than a quarter of all the CO₂ that humans put into the air.

CO₂ reacts with water to form ions that increase the ocean's acidity – which is a major problem for animals that live in it.

But we could use this effect for our benefit. Deliberately exposing large volumes of air to water containing potassium ions (similar to salt water) can effectively capture CO₂ very cost-effectively. This could be done wherever power is cheap and there is somewhere to store the CO₂.

4. Building batteries that use salt water could solve energy storage problems

Wind farms and solar panels are very effective at capturing energy – but to address climate change we need new and cheaper ways to store energy.

Heart-shaped hand warmers!

Lithium ion batteries, the most commonly used technology, use lithium ions dissolved in a liquid to carry electricity back and forth between the positive and negative terminals of a battery. The liquid currently used is expensive, slows the charging of the battery, and can catch fire.

Replacing this liquid with salt water is a key goal of battery research – with expected benefits in cost and safety. These types of batteries are also easier to manufacture, important for meeting increasing battery demand.

Read more: Water-based battery a step up for renewable energy

5. But we still can't predict even the simplest properties of salt water

Over the past century the importance of understanding salt water has been recognised – some of science's greatest Nobel prizewinning minds have worked on this problem.

We're still making exciting progress on this question today, in part by using powerful supercomputers and quantum mechanics to simulate how salt water behaves.

Unfortunately, our ability to predict the properties of salt water still has a long way to go. For example, extremely salty water can make a supersaturated solution which can be used to make hand warmers.

If this type of solution is left for long enough it will spontaneously form a solid salt, but our theoretical predictions for how long this will take are literally more than a quadrillion times too fast. The magnitude of this miscalculation tells us we're missing something vital!

The study of simple salt water is a hard sell compared with more exciting science about black holes or curing cancer. But this doesn't mean that it is any less important.

In fact, understanding salt is vital for understanding our own bodies and our own planet. It may even be the key to saving them.

Timothy Duignan, Postdoctoral Research Fellow in Energy Storage , The University of Queensland

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Explore further: Inexpensive and stable—The salt water battery

Related Stories

Inexpensive and stable—The salt water battery

January 9, 2018

Water could form the basis for future particularly inexpensive rechargeable batteries. Empa researchers have succeeded in doubling the electrochemical stability of water with a special saline solution. This takes us one ...

Water desalination picks up the pace

July 18, 2018

A membrane made of porous carbon-fiber structures grown on a porous ceramic substrate is more efficient at filtering seawater than existing similar membranes.

Battery technology could charge up water desalination

February 4, 2016

The technology that charges batteries for electronic devices could provide fresh water from salty seas, says a new study by University of Illinois engineers. Electricity running through a salt water-filled battery draws the ...

Recommended for you

After the Big One: Understanding aftershock risk

September 24, 2018

In early September 2018, a powerful earthquake on the island of Hokkaido in northern Japan triggered landslides, toppled buildings, cut power, halted industry, killed more than 40 people and injured hundreds. The national ...

National parks bear the brunt of climate change

September 24, 2018

Human-caused climate change has exposed U.S. national parks to conditions hotter and drier than the rest of the nation, says a new UC Berkeley and University of Wisconsin-Madison study that quantifies for the first time the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.