Inexpensive and stable—The salt water battery

January 9, 2018 by Rainer Klose, Swiss Federal Laboratories for Materials Science and Technology
Research on the water electrolyte: Empa researcher Ruben-Simon Kühnel connecting a test cell to the charger with the concentrated saline solution. The stability of the system is determined in several charging and discharging cycles. Credit: Empa

Water could form the basis for future particularly inexpensive rechargeable batteries. Empa researchers have succeeded in doubling the electrochemical stability of water with a special saline solution. This takes us one step closer to using the technology commercially.

In the quest to find safe, low-cost batteries for the future, eventually we have to ask ourselves a question: Why not simply use water as an electrolyte? Water is inexpensive, available everywhere, non-flammable and can conduct ions. However, water has one major drawback: It is chemically stable only up to a voltage of 1.23 volts. In other words, a water cell supplies three times less voltage than a customary lithium ion cell with 3.7 volts, which makes it poorly suited for applications in an electric car. A cost-effective, water-based battery, however, could be extremely interesting for stationary electricity storage applications.

Saline solution without free water

Ruben-Simon Kühnel and David Reber, researchers in Empa's Materials for Energy Conversion department, have now discovered a way to solve the problem: The salt containing electrolyte has to be liquid, but at the same time it has to be so highly concentrated that it does not contain any "excess" water.

For their experiments, the two researchers used the special salt FSI (precise name: sodium bis(fluorosulfonyl)imide). This salt is extremely soluble in water: seven grams of sodium FSI and one gram of water produce a clear saline solution (see video clip). In this liquid, all water molecules are grouped around the positively charged sodium cations in a hydrate shell. Hardly any unbound water molecules are present.

One gram of water dissolves seven grams of sodium FSI. This produces a clear saline solution with an electrochemical stability of up to 2.6 volts – twice as much as other aqueous electrolytes. Credit: Swiss Federal Laboratories for Materials Science and Technology

Cost-effective production

The researchers discovered that this displays an electrochemical stability of up to 2.6 volts –nearly twice as much as other aqueous electrolytes. The discovery could be the key to inexpensive, safe battery ; inexpensive because, apart from anything else, the sodium FSI cells can be constructed more safely and thus more easily than the well-known lithium ion batteries.

The system has already withstood a series of charging and discharging cycles in the lab. Until now, however, the researchers have been testing the anodes and cathodes of their test battery separately – against a standard electrode as a partner. In the next step, the two half cells are to be combined into a single battery. Then additional charging and discharging cycles are scheduled.

Empa's research activities on novel batteries for stationary electricity storage systems are embedded in the Swiss Competence Center for Heat and Electricity Storage (SCCER HaE), which coordinates research for new heat and electricity storage concepts on a national level and is led by the Paul Scherrer Institute (PSI).  If the experiment succeeds, inexpensive batteries will be within reach.

Explore further: Researchers developed an initial prototype of a solid sodium battery with the potential to store extra energy

Related Stories

Could a seawater battery help end our dependence on lithium?

December 7, 2016

With the ubiquity of lithium-ion batteries in smartphones and other rechargeable devices, it's hard to imagine replacing them. But the rising price of lithium has spurred a search for alternatives. One up-and-coming battery ...

Super environmentally friendly: the 'fool's gold battery'

November 13, 2015

High-performance lithium ion batteries face a major problem: Lithium will eventually start to run out as batteries are deployed in electric cars and stationary storage units. Researchers from Empa and ETH Zurich have now ...

Start-up aims at producing sodium-ion batteries

November 27, 2017

Two years after the first battery prototype using sodium ions in a standard industrial format was designed, the start-up Tiamat has been created to design, develop and produce this promising technology. This could counter ...

Recommended for you

Cryptocurrency rivals snap at Bitcoin's heels

January 14, 2018

Bitcoin may be the most famous cryptocurrency but, despite a dizzying rise, it's not the most lucrative one and far from alone in a universe that counts 1,400 rivals, and counting.

Top takeaways from Consumers Electronics Show

January 13, 2018

The 2018 Consumer Electronics Show, which concluded Friday in Las Vegas, drew some 4,000 exhibitors from dozens of countries and more than 170,000 attendees, showcased some of the latest from the technology world.

Finnish firm detects new Intel security flaw

January 12, 2018

A new security flaw has been found in Intel hardware which could enable hackers to access corporate laptops remotely, Finnish cybersecurity specialist F-Secure said on Friday.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.