Reesearchers confine mature cells to turn them into stem cells

July 10, 2018, National University of Singapore
An artists impression showing the growth of a spheroid from a somatic cell on a confined substrate. Fibroblast cells are confined to rectangular areas and allowed to grow over 10 days, by which stage they form spherical cluster of cells. Credit: National University of Singapore

Stem cells are the blank slate on which all specialised cells in our bodies are built and they are the foundation for every organ and tissue in the body.

Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute (MBI) at the National University of Singapore (NUS) and the FIRC Institute of Molecular Oncology (IFOM) in Italy, has revealed that mature can be reprogrammed into re-deployable without direct genetic modification – by confining them to a defined geometric space for an extended period of time.

"Our breakthrough findings will usher in a new generation of stem cell technologies for engineering and regenerative medicine that may overcome the negative effects of geonomic manipulation," said Prof Shivashankar.

Turning back the cellular clock

It has been over a decade since scientists first showed that can be reprogrammed in the lab to become pluripotent stem cells that are capable of being developed into any cell type in the body. In those early studies, researchers genetically modified mature cells by introducing external factors that reset the genomic programmes of the cells, essentially turning back the clock and returning them to an undifferentiated or unspecialised state. The resultant lab-made cells, known as induced pluripotent stem cells (iPSCs) can then be programmed into different cell types for use in tissue repair, drug discovery and even to grow new organs for transplant. Importantly, these cells did not need to be harvested from embryos.

However, a major obstacle is the tendency for any specialised cell that is developed from iPSCs, to form tumours after being introduced into the body. To understand why this occurred, researchers turned their focus to understanding how stem cell differentiation and growth is regulated in the body, and in particular, how cells naturally revert to an immature stem cell-like state, or convert to another cell type, during development, or in tissue maintenance.

Prof Shivashankar's team of researchers has shown that mature cells can be reprogrammed, in vitro, into pluripotent stem cells without genetically modifying the mature cells, simply by confining the cells to a defined area for growth.

Resetting mature cells

When fibroblast cells (a type of mature cell found in connective tissue such as tendons and ligaments) were confined to rectangular areas, they quickly assumed the shape of the substrate (the surface or medium that the cells are attached to). Based on previous work from the Shivashankar lab, this indicated that the cells were measuring and responding to the physical properties of their environment, and conveying this information to the nucleus where DNA packaging and genome programmes would adapt accordingly.

The team grew the cells over 10 days until they formed spherical clusters of cells. Genetic analysis of the cells within these clusters revealed that specific characteristics of chromatin (the condensed form of packaged DNA) normally associated with mature fibroblasts were lost by the sixth day. By the 10th day, the cells expressed genes normally associated with embryonic stem cells and iPSCs. The researchers have now learnt that by confining the mature cells for an extended period of time, mature fibroblasts can be turned into .

To confirm that the fibroblasts had indeed been reprogrammed into stem cells, the researchers then directed their growth, with high efficiency, into two different specialised cell types. Some cells were also directed back into fibroblasts.

Stem cell technologies redefined

The physical parameters used in the study are reflective of the transient geometric constraints that cells can be exposed to in the body. For example, during development, the establishment of geometric patterns and niches are essential in the formation of functional tissues and organs. Similarly, when tissue is damaged, either through injury or disease, cells will experience sudden alterations to their environment. In each case, mature cells may revert back to a pluripotent, stem cell-like state, before being redeployed as specialised cells for the repair or maintenance of the tissue.

"While it is well established that confining stem cells to defined geometric patterns and substrate properties can direct their differentiation into specialised cells, this study shows for the first time that mechanical cues can reset the genomic programmes of mature cells and return them to a pluripotent state," Prof Shivashankar explained.

He added, "The use of geometric constraints to reprogramme mature cells may better reflect the process occurring naturally within the body. More importantly, our findings allow researchers to generate stem cells from mature cells with high efficiency and without genetically modifying them."

The team's research findings were published in the Proceedings of the National Academy of Sciences (PNAS) in May 2018.

Explore further: It's all about the (stem cell) neighborhood

More information: Bibhas Roy et al. Laterally confined growth of cells induces nuclear reprogramming in the absence of exogenous biochemical factors, Proceedings of the National Academy of Sciences (2018). DOI: 10.1073/pnas.1714770115

Related Stories

It's all about the (stem cell) neighborhood

April 9, 2018

Stem cells have the ability to develop, or differentiate, into the many cell types in the body. They also serve as a repair system to replace aged or damaged cells. With their regenerative abilities, stem cells offer enormous ...

Study prompts new ideas on cancers' origins

December 16, 2017

Rapidly dividing, yet aberrant stem cells are a major source of cancer. But a new study suggests that mature cells also play a key role in initiating cancer—a finding that could upend the way scientists think about the ...

New tools to study the origin of embryonic stem cells

March 23, 2017

Researchers at Karolinska Institutet have identified cell surface markers specific for the very earliest stem cells in the human embryo. These cells are thought to possess great potential for replacing damaged tissue but ...

Recommended for you

How quinoa plants shed excess salt and thrive in saline soils

September 21, 2018

Barely heard of a couple of years ago, quinoa today is common on European supermarket shelves. The hardy plant thrives even in saline soils. Researchers from the University of Würzburg have now determined how the plant gets ...

Decoding the structure of an RNA-based CRISPR system

September 20, 2018

Over the past several years, CRISPR-Cas9 has moved beyond the lab bench and into the public zeitgeist. This gene-editing tool CRISPR-Cas9 holds promise for correcting defects inside individual cells and potentially healing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.