Cryo-electron microscopy characterizes integrins

July 31, 2018, University of California, San Francisco

A collaboration between three labs at UC San Francisco has resulted in an unprecedented look at a member of a vital and ubiquitous class of proteins called integrins (pronounced "INT-uh-grins"). Integrins are associated with fibrosis, scarring and stiffening of tissues that is associated with nearly half of all deaths in developed countries, and yet researchers had no high-resolution structural model of the proteins in their active state. Now, a combination of perseverance, technological achievement and insight has pinned down an elusive moving target.

Older techniques like X-ray crystallography require researchers to undergo laborious processes to pack proteins into crystals before they can make images to determine a protein's structure. This method works best on stationary, rigid, and symmetrical proteins: the opposite of integrins, which are quite flexible in their active form, said Stephen Nishimura, MD, one of the paper's senior authors and a professor of pathology at UCSF.

Integrins are embedded on the surfaces of all animal cells, connecting each cell to its surroundings and allowing it to communicate and respond to external forces. In order to encounter its targets, the new work suggests for the first time that an active integrin bends and sways at a flexible midpoint "like a sunflower seeking the sun," said Nishimura.

To explore an integrin's structure, the team used , a technique that has recently benefited from major advancements in hardware and software at UCSF. Melody Campbell, Ph.D., worked to visualize one type of integrin protein down to near-atomic precision. She imaged and analyzed the purified and frozen proteins in the lab of Yifan Cheng, Ph.D., a professor of biochemistry and biophysics at UCSF and the other senior author of the study.

But visualizing the protein was only part of the effort. The team's new paper in Nature Structural and Molecular Biology includes Campbell's work, genetic manipulation from Saburo Ito, Ph.D., and , purification and expertise from Anthony Cormier, Ph.D. Once the was visualized, the researchers validated their structural model by genetically engineering a related integrin that responded to biochemical cues exactly as the team's model predicted, suggesting that their findings extended to many, if not all, integrins.

With antibody engineering pioneers Jim Marks, MD, Ph.D., and Jianlong Lou, Ph.D., both in the Department of Anesthesia at UCSF, the authors have already developed several promising therapeutic antibodies, using the new structure as a template. Some companies are already working with those antibodies to develop treatments for conditions like cancer and fibrosis. But for Nishimura, who has been working with integrins for more than two decades, the detailed model is also personally satisfying: "It's like seeking an old archnemesis, and finally freezing him in his tracks."

Explore further: Proteins keep a grip on cells

More information: Anthony Cormier et al. Cryo-EM structure of the αvβ8 integrin reveals a mechanism for stabilizing integrin extension, Nature Structural & Molecular Biology (2018). DOI: 10.1038/s41594-018-0093-x

Related Stories

Proteins keep a grip on cells

September 7, 2017

Japanese scientists at Osaka University have revealed new structural information on the integrin-laminin interaction. These findings provide important insights on cellular interactions that promote cell growth, differentiation, ...

How cells move

October 10, 2016

It's a known fact that cells can move around the body, but how they do it has been unknown – until now.

Recommended for you

Custom-made artificial mother-of-pearl

December 10, 2018

Natural mother-of-pearl, such as mussels, is one of the hardest, most stable and stiff natural materials. Researchers have always been fascinated by it. The structure of mother-of-pearl is exquisite under the electron microscope; ...

Engineers repurpose wasp venom as an antibiotic drug

December 7, 2018

The venom of insects such as wasps and bees is full of compounds that can kill bacteria. Unfortunately, many of these compounds are also toxic for humans, making it impossible to use them as antibiotic drugs.

Researchers probe hydrogen bonds using new technique

December 7, 2018

Researchers at Carnegie Mellon University have used nuclear resonance vibrational spectroscopy to probe the hydrogen bonds that modulate the chemical reactivity of enzymes, catalysts and biomimetic complexes. The technique ...

Are amorphous solids elastic or plastic?

December 7, 2018

In a crystalline solid, the atoms form an ordered lattice. Crystalline solids respond elastically to small deformations: When the applied strain is removed, the macroscopic stress, as well as the microscopic configuration ...

Molecular insights into spider silk

December 7, 2018

Spider silk is one of the toughest fibres in nature and has astounding properties. Scientists from the University of Würzburg discovered new molecular details of self-assembly of a spider silk fibre protein.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.