Quantum non-locality in ultra-cold atomic gases

June 21, 2018, University of Warsaw
The scattering scheme shown with the optical lattice formed by the two counter-propagating laser beams. The gas is represented by a black dot and atoms scatter into the separate regions A and B, which correspond to the two distant shoe boxes. Credit: UW Physics

Non-locality, Einstein's ''spooky action at a distance," has been observed between quantum objects separated by more than one kilometer. Recent years have seen a major advancement in the quest for non-local systems. Researchers from the Faculty of Physics, University of Warsaw, present a novel and versatile method for creating and detecting such correlations in a many-body system of ultra-cold atoms. They have published their results in Physical Review Letters.

Quantum mechanics was formulated in the first half of the 20th century. Its predictions have been confirmed in a number of experiments and applications ranging from computer chips to lasers used in medicine.

'"Though the quantum theory is commonly accepted, some of its aspects are still controversial. For instance, states in superposition are described as if they were in many places at once. This has no counterpart in the classical world and is difficult to interpret. Entanglement—quantum correlation between physical objects—also cannot be compared with everyday life experience," says Jan Chwedenczuk (Faculty of Physics, University of Warsaw).

For many researchers, the most relevant aspect of , at least from the philosophical point of view, is non-locality. People find it difficult to accept that events taking place in distant galaxies could infinitely quickly influence something happening on Earth. However, allows for such non-local phenomena.

Imagine a pair of shoes, two boxes and a generator—the shoes are distributed among the boxes according to the result of the draw. Afterward, one box is sent to Mars, while the other remains on Earth. Without opening the boxes, common sense holds that if the left shoe is on Earth, the right shoe is on Mars, and vice versa. In the classical realm, one of these possibilities is determined at the moment of the generation of a random number. Quantum mechanics describes this situation in such a way that both possibilities exist simultaneously. Moreover, local manipulations of one of the boxes will immediately affect the other, no matter how distant they are. We say that quantum mechanics is a non-local theory. Only after the measurement is made and the boxes are opened is the state of each shoe determined.

This example serves merely as an illustration—such subtle effects are observed at the atomic scale. Nevertheless, the mere possibility of ''steering'' one system with the other, without any direct interaction, drove Einstein and his coworkers to write a paper titled "Can quantum-mechanical description of physical reality be considered complete?"

Nearly 30 years later, a Northern Irish physicist John Bell proved that the predictions of quantum mechanics contradict the postulates of local realism, which assumes that objects have well-determined properties (realism) and their behavior is influenced by what is happening in the vicinity (locality). Bell gave a prescription for detecting the non-locality in simple physical systems. This method is now called the Bell inequalities.

In their recent publication Tomasz Wasak and Jan Chwedenczuk considered a complex many-body system, showed that it reveals non-local properties and finally gave an experimentally useful method for detecting such correlations. The system is a Bose-Einstein condensate of helium atoms, illuminated with two counter-propagating laser beams. In such configuration, helium atoms collide and scatter into opposite directions, forming a non-local pair.

"The scattered atoms are the analog of the pair of shoes. Similarly to this example, one can manipulate each atom locally and perform measurements to find out if the non-locality is indeed present in this system," says Jan Chwedenczuk.

Explore further: Researchers create a quantum entanglement between two physically separated ultra-cold atomic clouds

More information: Tomasz Wasak et al, Bell Inequality, Einstein-Podolsky-Rosen Steering, and Quantum Metrology with Spinor Bose-Einstein Condensates, Physical Review Letters (2018). DOI: 10.1103/PhysRevLett.120.140406

Related Stories

Bell correlations measured in half a million atoms

April 17, 2017

(Phys.org)—Physicists have demonstrated Bell correlations in the largest physical system to date—an ensemble of half a million atoms at an ultracold temperature of 25 µK. The presence of Bell correlations indicates that ...

All quantum communication involves nonlocality

April 1, 2016

Researchers of CWI, University of Gdansk, Gdansk University of Technology, Adam Mickiewicz University and the University of Cambridge have proven that quantum communication is based on nonlocality. They show that whenever ...

Quantum test strengthens support for EPR steering

October 14, 2014

Although the concept of "steering" in quantum mechanics was proposed back in 1935, it is still not completely understood today. Steering refers to the ability of one system to nonlocally affect, or steer, another system's ...

Recommended for you

Correlated nucleons may solve 35-year-old mystery

February 20, 2019

A careful re-analysis of data taken at the Department of Energy's Thomas Jefferson National Accelerator Facility has revealed a possible link between correlated protons and neutrons in the nucleus and a 35-year-old mystery. ...

CMS gets first result using largest-ever LHC data sample

February 15, 2019

Just under three months after the final proton–proton collisions from the Large Hadron Collider (LHC)'s second run (Run 2), the CMS collaboration has submitted its first paper based on the full LHC dataset collected in ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.