A potentially cheap, efficient and eco-friendly system for purifying natural gas

May 3, 2018, American Institute of Physics
Credit: Wikipedia

Fundamental researchers at the Colorado School of Mines have proposed a novel two-part system for separating impurities from natural gas in the Journal of Renewable and Sustainable Energy. Natural gas primarily contains methane, but impurities in the gaseous mixture need to be removed before the methane can be put into the pipeline. The newly proposed purification system combines two separation methods and, in principle, promises to improve performance, reduce costs and diminish ecological side effects compared to benchmark technologies.

Natural gas processing typically relies on high-temperature techniques that incur high operating costs. "We propose an integrated process consisting of gas hydrates and membranes, to make the overall process of purifying natural gas potentially more economical without high-temperature driven processes," said co-author Moises Carreon, an expert in separating technologies.

Membrane technology applies different types of material to filter out carbon dioxide and nitrogen from raw natural gas. Propane and hydrogen sulfide are also often present and can negatively affect membrane performance. A possible solution to this problem emerged when Carolyn Koh, an expert in hydrates, Pramod Warrier, postdoctoral researcher, and Carreon began talking.

"Hydrates form hydrogen-bonded water cages that trap the gases you want to separate," Koh said. "It's a potentially very selective way of trapping those gases." Different pressure and temperature conditions are required for impurity hydrates to form compared to . The engineers decided to introduce selective hydrate formation as a preliminary step to the membrane separation process.

In the paper, the researchers used well-established algorithms to prove the feasibility of specific hydrates' formation. These conditions have a relatively low energy demand that could make the integrated system economical.

"In this integrated system, we first remove all of the nasty chemicals present in natural gas using to produce a purer mixture," Cameron said. He then explained how the purer mixture of gases is easier to separate using .

Hydrate formation is not only energy-efficient but also environmentally friendly. Water is the only additional material required for gas hydrate formation, and it effectively sequesters hazardous gases like hydrogen sulfide into the solid hydrate form, which prevents its release into the environment. There are some other contaminants that need to be removed separately, but this newly proposed system reduces environmental impact from the current industrial processes.

The integrated hydrate-membrane system can also serve as a model for other molecular gas separations, such as hydrogen gas purification.

The engineers are now focused on proving their theoretical concept. "We're trying to demonstrate that this integrated system can effectively separate impurities in laboratory experiments," said Carreon. Part of that work will involve optimization to ensure that the structures form easily and rapidly, and can maintain their stability.

Explore further: Team discloses the formation of burning ice in oceanic clay rich sediment

More information: Pramod Warrier et al, Integrated gas hydrate-membrane system for natural gas purification, Journal of Renewable and Sustainable Energy (2018). DOI: 10.1063/1.5019967

Related Stories

Why did gas hydrates melt at the end of the last ice age?

February 13, 2018

Methane hydrates, also known as "burning ice," occur at all ocean margins. The compound of gas and water occurs in the seafloor and it is only stable under relatively high pressures and low temperatures. If the pressure is ...

Study finds hydrate gun hypothesis unlikely

August 23, 2017

Clathrate (hydrate) gun hypothesis stirred quite the controversy when it was posed in 2003. It stated that methane hydrates—frozen water cages containing methane gas found below the ocean floor—can melt due to increasing ...

Recommended for you

Materials chemists tap body heat to power 'smart garments'

January 22, 2019

Many wearable biosensors, data transmitters and similar tech advances for personalized health monitoring have now been "creatively miniaturized," says materials chemist Trisha Andrew at the University of Massachusetts Amherst, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.