A new gelling molecule for growing neurons in 3-D

May 15, 2018, CNRS
Cells nested in the fibers of the N-heptyl-galactonamide molecular gel. The cells are round and green. Straight, rigid fibers are pink. Curved, flexible fibers are green. Credit: Anaïs Chalard (IMRCP) – Laurence Vaysse (ToNIC) – Brice Ronsin and Stéphanie Bosch (CBI-LITC-TRI), Toulouse

A multidisciplinary team of researchers from CNRS, INSERM and Université Toulouse III – Paul Sabatier has developed a hydrogel that can grow, develop and differentiate neural stem cells. This biomaterial could provide new paths for the development of in vitro cellular models of brain tissue or of in vivo tissue reconstruction. This work is published in ACS Applied Materials & Interfaces on May 14, 2018.

Although we know how to culture on a two-dimensional surface, that is not representative of the actual cell environment in a live organism. In , cells are organized and interact in three dimensions in a soft structure. The researchers' main goal was to imitate this as closely as possible. They developed a that meets suitable criteria for permeability, rigidity and biocompatibility; on that, they cultured human neural stem cells.

N-heptyl-galactonamide is a new molecule synthesized by these scientists, which is part of a family of gelling agents that usually produces unstable gels. It is biocompatible, has a very simple structure, and can be made quickly, so has many advantages. By working on the parameters for forming the gel, the researchers at the Laboratoire Interactions Moléculaires et Réactivité Chimique et Photochimique (CNRS/Université Toulouse III-Paul Sabatier), Toulouse Neuro Imaging Center (INSERM/Université Toulouse III-Paul Sabatier) and the CNRS Laboratoire d'Analyse et d'Architecture des Systèmes obtained a stable hydrogel with very low density and very low rigidity. Because of that, can penetrate and develop in three dimensions in the hydrogel. It also has a network composed of different types of fibers, some straight and rigid, others curved and flexible. This diversity allows neurons to develop a network of short- and long-distance connections like those in tissue.

This new biomaterial could therefore lead to the development of three-dimensional brain tissue models that function in a manner approaching in vivo conditions. In the long run, it could be used to evaluate the effect of a medicine or to enable cells to be transplanted with their matrix to repair brain damage.

Explore further: Method of accelerating the maturation of stem cells to form neurons discovered

More information: Anaïs Chalard et al. Simple Synthetic Molecular Hydrogels from Self-Assembling Alkylgalactonamides as Scaffold for 3D Neuronal Cell Growth, ACS Applied Materials & Interfaces (2018). DOI: 10.1021/acsami.8b01365

Related Stories

Fish in schools can take it easy

May 9, 2018

Using a new computer model, researchers at the Ecole Centrale de Marseille and CNRS have shown that a fish expends less energy when it swims in a school, because neighbouring fish produce a 'suction' effect. This work will ...

Researchers clarify the identity of brain stem cells

May 4, 2018

The human nervous system is a complex structure that sends electrical signals from the brain to the rest of the body, enabling us to move and think. Unfortunately, when brain cells are damaged by trauma or disease they don't ...

Recommended for you

Using machine learning to design peptides

December 10, 2018

Scientists and engineers have long been interested in synthesizing peptides—chains of amino acids responsible for conducting many functions within cells—to both mimic nature and to perform new activities. A designed peptide, ...

Biomimetic strategy leads to strong, recyclable rubber

December 10, 2018

Inspired by nature, Chinese scientists have produced a synthetic analogue to vulcanized natural rubber. Their material is just as tough and durable as the original. In the journal Angewandte Chemie, they reveal the secret ...

Custom-made artificial mother-of-pearl

December 10, 2018

Natural mother-of-pearl, such as mussels, is one of the hardest, most stable and stiff natural materials. Researchers have always been fascinated by it. The structure of mother-of-pearl is exquisite under the electron microscope; ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.