Researchers uncover new way of growing stem cells

May 16, 2017 by David Stacey
Researchers uncover new way of growing stem cells
Credit: University of Western Australia

Research led by The University of Western Australia has discovered a new, simple and less expensive way of growing human stem cells.

Using hydrogel, a gel with a gradient that can be used to mimic the of human body tissues, the researchers were able to generate positive outcomes for the growth of stem cells.

Dr Yu Suk Choi from UWA's School of Human Sciences at The University of Western Australia led the international collaboration which also included researchers from the University of California, San Diego (USA) and Max Planck Institute for Medical Research (Germany).

"Stem cells work by using the 'stiffness' of surrounding as a gauge to identify the way they need to behave in a particular environment in the human body," Dr Choi said.

"By using hydrogel to mimic the stiffness of tissue, we found we could 'trick' the into behaving in particular ways to help them grow and encourage the cells to behave in positive, regenerative ways.

"Hydrogel is simple and inexpensive to produce and could have a wide range of applications in biology labs that don't always have the infrastructure available to use other methods to mimic the stiffness of tissue to aid stem cell growth."

Dr Choi said the research may have important uses in combating serious illnesses affecting the human population.

"Many degenerative diseases result in changes to tissue stiffness which alters the behavior of cells," he said.

"But by controlling tissue stiffness we can revert cell behavior back to normal, and change their behavior at the disease site into more regenerative behaviour. This will help us us to treat diseases such as cancer that are currently very difficult to treat."

The next step for the researchers will be to use with patient originated to further understand the effect of tissue stiffness on cell behaviour.

Explore further: Inbuilt body clocks link breast stiffness to cancer risks

More information: William J. Hadden et al. Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels, Proceedings of the National Academy of Sciences (2017). DOI: 10.1073/pnas.1618239114

Related Stories

Recommended for you

Gene editing in the brain gets a major upgrade

October 19, 2017

Genome editing technologies have revolutionized biomedical science, providing a fast and easy way to modify genes. However, the technique allowing scientists to carryout the most precise edits, doesn't work in cells that ...

Water striders illustrate evolutionary processes

October 19, 2017

How do new species arise and diversify in nature? Natural selection offers an explanation, but the genetic and environmental conditions behind this mechanism are still poorly understood. A team led by Abderrahman Khila at ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.